Câu hỏi:

19/09/2024 783

Cho hình tứ diện OABC có G(3; −3; 6) là trọng tâm. Tìm tọa độ điểm A thỏa mãn \(\overrightarrow {AB} \) = (1; 2; 3) và \(\overrightarrow {AC} \) = (−1; 4; −2).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi A(a; b; c).

Có G là trọng tâm nên \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GO} = \overrightarrow 0 \)

\(\overrightarrow {GA} + \left( {\overrightarrow {GA} + \overrightarrow {AB} } \right) + \left( {\overrightarrow {GA} + \overrightarrow {AC} } \right) + \left( {\overrightarrow {GA} + \overrightarrow {AO} } \right) = \overrightarrow 0 \)

\(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AO} = 4\overrightarrow {AG} \)

Ta có: \(\overrightarrow {AB} \) = (1; 2; 3), \(\overrightarrow {AC} \) = (−1; 4; −2), \(\overrightarrow {AO} \) = (−a; −b; −c),

\(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AO} \) = (−a; 6 – b; 1 – c).

          \(\overrightarrow {AG} \) = (3 – a; −3 – b; 6 – c) \(4\overrightarrow {AG} \) = (12 – 4a; −12 – 4b; 24 – 4c).

Do đó, \(\left\{ \begin{array}{l} - a = 12 - 4a\\6 - b = - 12 - 4a\\1 - c = 24 - 4c\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 4\\b = - 6\\c = \frac{{23}}{3}\end{array} \right.\) A\(\left( {4; - 6;\frac{{23}}{3}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho điểm M(3; −1; 2). Tìm:

a) Tọa độ điểm M' là điểm đối xứng của điểm M qua gốc tọa độ O.

b) Tọa độ điểm O' là điểm đối xứng của điểm O qua điểm M.

c) Khoảng cách từ M đến gốc tọa độ.

d) Khoảng cách từ M đến mặt phẳng (Oxz).

Xem đáp án » 19/09/2024 1,359

Câu 2:

Một nhân viên đang sử dụng phần mềm để thiết kế khung của một ngôi nhà trong không gian Oxyz được minh họa như Hình 3. Cho biết OABC.DEFH là hình hộp chữ nhật và EMF.DNH là hình lăng trụ đứng.

Một nhân viên đang sử dụng phần mềm để thiết kế khung của một ngôi nhà trong không gian Oxyz được minh họa như Hình 3. Cho biết OABC.DEFH là hình hộp chữ nhật và EMF.DNH là hình lăng trụ đứng. (ảnh 1)

a) Tìm tọa độ các điểm B, F, H.

b) Tìm tọa độ các vectơ \(\overrightarrow {ME} ,\overrightarrow {MF} \).

c) Tính số đo \(\widehat {EMF}\).

Xem đáp án » 19/09/2024 1,119

Câu 3:

Cho điểm A(1; 2; 3). Tính khoảng cách từ A đến trục Oy.

Xem đáp án » 19/09/2024 1,118

Câu 4:

Cho hình bình hành OABD có \(\overrightarrow {OA} \) = (−1; 1; 0) và \(\overrightarrow {OB} \) = (1; 1; 0) với O là gốc tọa độ. Tìm tọa độ của điểm D.

Xem đáp án » 19/09/2024 915

Câu 5:

Cho hình hộp ABCD.A'B'C'D' có A(2; 4; 0), B(4; 0; 0), C(−1; 4; −7) và D'(6; 8; 10). Tìm tọa độ của điểm B'.

Xem đáp án » 19/09/2024 563

Câu 6:

Cho điểm M(a; b; c). Gọi A, B, C theo thứ tự là điểm đối xứng của điểm M qua các mặt phẳng (Oxy), (Oyz), (Oxz). Tìm tọa độ trọng tâm tam giác ABC.

Xem đáp án » 19/09/2024 418

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store