Tìm tọa độ ba vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) thỏa mãn \(\overrightarrow a = 2\overrightarrow i + 3\overrightarrow j - 5\overrightarrow k \), \(\overrightarrow b = - 3\overrightarrow j + 4\overrightarrow k \), \(\overrightarrow c = - \overrightarrow i - 2\overrightarrow j \).
Tìm tọa độ ba vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) thỏa mãn \(\overrightarrow a = 2\overrightarrow i + 3\overrightarrow j - 5\overrightarrow k \), \(\overrightarrow b = - 3\overrightarrow j + 4\overrightarrow k \), \(\overrightarrow c = - \overrightarrow i - 2\overrightarrow j \).
Quảng cáo
Trả lời:
Ta có: \(\overrightarrow a = 2\overrightarrow i + 3\overrightarrow j - 5\overrightarrow k \) suy ra \(\overrightarrow a \) = (2; 3; −5).
\(\overrightarrow b = - 3\overrightarrow j + 4\overrightarrow k \) suy ra \(\overrightarrow b \) = (0; −3; 4).
\(\overrightarrow c = - \overrightarrow i - 2\overrightarrow j \) suy ra \(\overrightarrow c \) = (−1; −2; 0).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hình chiếu của A(1; 2; 3) trên trục Oy là A'(0; 2; 0).
Khoảng cách từ A trên trục Oy là AA' = \(\sqrt {{{\left( {1 - 0} \right)}^2} + {{\left( {2 - 2} \right)}^2} + {{\left( {3 - 0} \right)}^2}} \) = \(\sqrt {10} \).
Lời giải
a) Ta có OABC là hình chữ nhật nên \(\overrightarrow {OA} = \overrightarrow {CB} = \left( {6;0;0} \right)\) ⇒ B(6; 4; 0).
AEFB là hình chứ nhật nên \(\overrightarrow {AE} = \overrightarrow {BF} = \left( {0;0;4} \right)\) ⇒ F(6; 4; 4).
DEFH là hình chữ nhật nên \(\overrightarrow {ED} = \overrightarrow {FH} = \left( {6;0;0} \right)\) ⇒ H(12; 4; 4).
b) Ta có: \(\overrightarrow {ME} \) = (0; −2; −2); \(\overrightarrow {MF} \) = (0; 2; −2).
c) Ta có: cos\(\widehat {EMF}\) = \(\frac{{\overrightarrow {ME} .\overrightarrow {MF} }}{{\left| {\overrightarrow {ME} } \right|.\left| {\overrightarrow {MF} } \right|}} = \frac{{0.0 + \left( { - 2} \right).2 + \left( { - 2} \right).\left( { - 2} \right)}}{{\sqrt {{0^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{0^2} + {2^2} + {{\left( { - 2} \right)}^2}} }} = 0\).
⇒ \(\widehat {EMF}\) = 90°.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.