Câu hỏi:
19/09/2024 2,784Tìm:
a) \[\int {\frac{{{{\cos }^2}x}}{{1 - {\mathop{\rm s}\nolimits} {\rm{inx}}}}dx} \];
b) \[\int {\left( {1 + 3{{\sin }^2}\frac{x}{2}} \right)dx} \];
c) \[\int {\frac{{2{{\cos }^3}x + 3}}{{{{\cos }^2}x}}dx} \].
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
a)\[\int {\frac{{{{\cos }^2}x}}{{1 - \sin {\rm{x}}}}dx} = \int {\frac{{1 - {{\sin }^2}x}}{{1 - \sin {\rm{x}}}}dx} \]
\[ = \int {\frac{{\left( {1 - \sin {\rm{x}}} \right)\left( {1 + \sin {\rm{x}}} \right)}}{{\left( {1 - \sin {\rm{x}}} \right)}}dx} \]
\[ = \int {\left( {1 + \sin {\rm{x}}} \right)dx} = x - \cos x + C.\]
b) \[\int {\left( {1 + 3{{\sin }^2}\frac{x}{2}} \right)dx} = \int {\left( {1 + 3.\frac{{1 - \cos x}}{2}} \right)dx} \]
\[ = \int {\left( {\frac{5}{2} - \frac{3}{2}\cos x} \right)dx} \]
\[ = \frac{5}{2}x - \frac{3}{2}\sin {\rm{x}} + C\].
c) \[\int {\frac{{2{{\cos }^3}x + 3}}{{{{\cos }^2}x}}dx} = \int {\left( {2\cos x + \frac{3}{{{{\cos }^2}x}}} \right)dx} \]
\[ = \int {2\cos xdx + \int {\frac{3}{{{{\cos }^2}x}}dx} } \]
\[ = 2\sin x + 3\tan x + C\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một vật chuyển động thẳng dọc theo một đường thẳng (có gắn trục tọa độ Ox với độ dài đơn vị bằng 1 m). Biết rằng vật xuất phát từ vị trí ban đầu là gốc tọa độ và chuyển động với vận tốc v(t) = 8 – 0,4t (m/s), trong đó t là thời gian tính theo giây (t ≥ 0).
a) Xác định tọa độ x(t) của vật tại thời điểm t, t ≥ 0.
c) Tại thời điểm nào thì vật đi qua gốc tọa độ (không tính thời điểm ban đầu)?
Câu 2:
Một quần thể vi sinh vật có tốc độ tăng số lượng cá thể được ước lượng bởi
\[P'\left( t \right) = 150\sqrt t \] (cá thể/ngày) với 0 ≤ t ≤ 10,
trong đó P(t) là số lượng cá thể vi sinh vật tại thời điểm t ngày kể từ thời điểm ban đầu. Biết rằng ban đầu quần thể có 1 000 cá thể.
a) Xác định hàm số P(t).
b) Ước lượng số cá thể của quần thể sau 5 ngày kể từ thời điểm ban đầu (kết quả làm tròn đến hàng trăm).
Câu 3:
Biết rằng đồ thị của hàm số y = f(x) đi qua điểm (1; 2) và có hệ số góc của tiếp tuyến tại mỗi điểm (x; f(x)) là \[\frac{{1 - x}}{{{x^2}}}\] với x > 0. Tìm hàm số f(x).
Câu 4:
Tìm đạo hàm của hàm số F(x) = \[\ln \left( {\sqrt {{x^2} + 4} - x} \right)\]. Từ đó, tìm \[\int {\frac{1}{{\sqrt {{x^2} + 4} }}dx} \].
Câu 5:
Tìm:
a) \[\int {\left( {{5^x} + 1} \right)\left( {{5^x} - 1} \right)dx} \];
b) \[\int {{e^{ - 0,5x}}dx} \];
c) \[\int {{2^{x - 1}}{{.5}^{2x + 1}}dx} \].
Câu 6:
Tìm hàm số f(x), biết rằng:
a) f'(x) = 2x3 – 4x + 1, f(1) = 0;
b) f'(x) = 5cosx – sinx, \[f\left( {\frac{\pi }{2}} \right) = 1\].
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận