Tìm:
a) \[\int {\frac{{{{\cos }^2}x}}{{1 - {\mathop{\rm s}\nolimits} {\rm{inx}}}}dx} \];
b) \[\int {\left( {1 + 3{{\sin }^2}\frac{x}{2}} \right)dx} \];
c) \[\int {\frac{{2{{\cos }^3}x + 3}}{{{{\cos }^2}x}}dx} \].
Tìm:
a) \[\int {\frac{{{{\cos }^2}x}}{{1 - {\mathop{\rm s}\nolimits} {\rm{inx}}}}dx} \];
b) \[\int {\left( {1 + 3{{\sin }^2}\frac{x}{2}} \right)dx} \];
c) \[\int {\frac{{2{{\cos }^3}x + 3}}{{{{\cos }^2}x}}dx} \].
Quảng cáo
Trả lời:
a)\[\int {\frac{{{{\cos }^2}x}}{{1 - \sin {\rm{x}}}}dx} = \int {\frac{{1 - {{\sin }^2}x}}{{1 - \sin {\rm{x}}}}dx} \]
\[ = \int {\frac{{\left( {1 - \sin {\rm{x}}} \right)\left( {1 + \sin {\rm{x}}} \right)}}{{\left( {1 - \sin {\rm{x}}} \right)}}dx} \]
\[ = \int {\left( {1 + \sin {\rm{x}}} \right)dx} = x - \cos x + C.\]
b) \[\int {\left( {1 + 3{{\sin }^2}\frac{x}{2}} \right)dx} = \int {\left( {1 + 3.\frac{{1 - \cos x}}{2}} \right)dx} \]
\[ = \int {\left( {\frac{5}{2} - \frac{3}{2}\cos x} \right)dx} \]
\[ = \frac{5}{2}x - \frac{3}{2}\sin {\rm{x}} + C\].
c) \[\int {\frac{{2{{\cos }^3}x + 3}}{{{{\cos }^2}x}}dx} = \int {\left( {2\cos x + \frac{3}{{{{\cos }^2}x}}} \right)dx} \]
\[ = \int {2\cos xdx + \int {\frac{3}{{{{\cos }^2}x}}dx} } \]
\[ = 2\sin x + 3\tan x + C\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có: \[x\left( t \right) = \int {v\left( t \right)dt = \int {\left( {8 - 0,4t} \right)dt} } \] = 8t – 0,2t2 + C.
Ban đầu vật ở gốc tọa độ nên x(0) = 0, suy ra C = 0.
Vậy x(t) = 8t – 0,2t2 với t ≥ 0.
b) Ta có: x(t) = 0 ⇒ 8t – 0,2t2 = 0 ⇔ t = 0 hoặc t = 40.
Do không tính thời điểm ban đầu nên vật đi qua gốc tọa độ tại thời điểm t = 40 giâyLời giải
a) \[P\left( t \right) = \int {P'\left( t \right)dt = \int {150\sqrt t dt = 150\int {{t^{\frac{1}{2}}}dt} } } \]
\[ = 150.\frac{2}{3}.{t^{\frac{3}{2}}} + C = 100t\sqrt t + C\].
Theo giả thiết, ta có P(0) = 1 000, suy ra C = 1 000.
Do đó, \[P\left( t \right) = 100t\sqrt t + 1000\].
b) P(5) = 100.5.\[\sqrt 5 \] + 1000 = 500\[\sqrt 5 \] + 1000 ≈ 2 100 (cá thể).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.