Câu hỏi:

19/09/2024 3,949

Tìm đạo hàm của hàm số F(x) = \[\ln \left( {\sqrt {{x^2} + 4}  - x} \right)\]. Từ đó, tìm \[\int {\frac{1}{{\sqrt {{x^2} + 4} }}dx} \].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:

\[F'\left( x \right) = {\left[ {\ln \left( {\sqrt {{x^2} + 4}  - x} \right)} \right]^\prime }\]

          \[ = \frac{1}{{\sqrt {{x^2} + 4}  - x}}.{\left( {\sqrt {{x^2} + 4}  - x} \right)^\prime }\]

          \[ = \frac{1}{{\sqrt {{x^2} + 4}  - x}}.\left( {\frac{x}{{\sqrt {{x^2} + 4} }} - 1} \right)\]

            \[ = \frac{1}{{\sqrt {{x^2} + 4}  - x}}.\frac{{x - \sqrt {{x^2} + 4} }}{{\sqrt {{x^2} + 4} }}\]

            \[ =  - \frac{1}{{\sqrt {{x^2} + 4} }}{\rm{ }}\left( {x \in \mathbb{R}} \right).\]

Suy ra \[\int {\frac{1}{{\sqrt {{x^2} + 4} }}} dx = \int {\left[ { - F'\left( x \right)} \right]dx =  - \int {F'\left( x \right)dx} } \]

                                = \[ - F\left( x \right) + C =  - \ln \left( {\sqrt {{x^2} + 4}  - x} \right) + C.\]

Vậy \[\int {\frac{1}{{\sqrt {{x^2} + 4} }}dx}  =  - \ln \left( {\sqrt {{x^2} + 4}  - x} \right) + C.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: \[x\left( t \right) = \int {v\left( t \right)dt = \int {\left( {8 - 0,4t} \right)dt} } \] = 8t – 0,2t2 + C.

Ban đầu vật ở gốc tọa độ nên x(0) = 0, suy ra C = 0.

Vậy x(t) = 8t – 0,2t2 với t ≥ 0.

b) Ta có: x(t) = 0 8t – 0,2t2 = 0 t = 0 hoặc t = 40.

Do không tính thời điểm ban đầu nên vật đi qua gốc tọa độ tại thời điểm t = 40 giây

Lời giải

a) \[P\left( t \right) = \int {P'\left( t \right)dt = \int {150\sqrt t dt = 150\int {{t^{\frac{1}{2}}}dt} } } \]

            \[ = 150.\frac{2}{3}.{t^{\frac{3}{2}}} + C = 100t\sqrt t  + C\].

Theo giả thiết, ta có P(0) = 1 000, suy ra C = 1 000.

Do đó, \[P\left( t \right) = 100t\sqrt t  + 1000\].

b) P(5) = 100.5.\[\sqrt 5 \] + 1000 = 500\[\sqrt 5 \] + 1000 ≈ 2 100 (cá thể).
 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay