Câu hỏi:

19/09/2024 1,050

Tìm hàm số f(x), biết rằng:

a) f'(x) = 2x3 – 4x + 1, f(1) = 0;

b) f'(x) = 5cosx – sinx, \[f\left( {\frac{\pi }{2}} \right) = 1\].

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) \[f\left( x \right) = \int {f'\left( x \right)dx} \]

            \[ = \int {\left( {2{x^3} - 4x + 1} \right)dx} \]

            = \[\frac{{{x^4}}}{2} - 2{x^2} + x + C.\]

Mà f(1) = 0 ⇒ \[\frac{1}{2} - 2 + 1 + C = 0\]⇒ \[C = \frac{1}{2}\].

Vậy \[f\left( x \right) = \frac{{{x^4}}}{2} - 2{x^2} + x + \frac{1}{2}.\]

b) Ta có: \[f\left( x \right) = \int {f'\left( x \right)dx} \]

                        \[ = \int {\left( {5\cos x - \sin {\rm{x}}} \right)dx} \]

                        \[ = 5\sin x + \cos x + C\].

Mà \[f\left( {\frac{\pi }{2}} \right) = 1\] nên \[5\sin \left( {\frac{\pi }{2}} \right) + \cos \left( {\frac{\pi }{2}} \right) + C = 1\] hay \[5 + C = 1\] suy ra  C = −4.

Vậy f(x) = 5sinx + cosx – 4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một vật chuyển động thẳng dọc theo một đường thẳng (có gắn trục tọa độ Ox với độ dài đơn vị bằng 1 m). Biết rằng vật xuất phát từ vị trí ban đầu là gốc tọa độ và chuyển động với vận tốc v(t) = 8 – 0,4t (m/s), trong đó t là thời gian tính theo giây (t ≥ 0).

a) Xác định tọa độ x(t) của vật tại thời điểm t, t ≥ 0.

c) Tại thời điểm nào thì vật đi qua gốc tọa độ (không tính thời điểm ban đầu)?

Xem đáp án » 19/09/2024 5,082

Câu 2:

Biết rằng đồ thị của hàm số y = f(x) đi qua điểm (1; 2) và có hệ số góc của tiếp tuyến tại mỗi điểm (x; f(x)) là \[\frac{{1 - x}}{{{x^2}}}\] với x > 0. Tìm hàm số f(x).

Xem đáp án » 19/09/2024 2,965

Câu 3:

Tìm đạo hàm của hàm số F(x) = \[\ln \left( {\sqrt {{x^2} + 4}  - x} \right)\]. Từ đó, tìm \[\int {\frac{1}{{\sqrt {{x^2} + 4} }}dx} \].

Xem đáp án » 19/09/2024 2,455

Câu 4:

Tìm:

a) \[\int {\frac{{{{\cos }^2}x}}{{1 - {\mathop{\rm s}\nolimits} {\rm{inx}}}}dx} \];

b) \[\int {\left( {1 + 3{{\sin }^2}\frac{x}{2}} \right)dx} \];

c) \[\int {\frac{{2{{\cos }^3}x + 3}}{{{{\cos }^2}x}}dx} \].

Xem đáp án » 19/09/2024 1,678

Câu 5:

Một quần thể vi sinh vật có tốc độ tăng số lượng cá thể được ước lượng bởi

\[P'\left( t \right) = 150\sqrt t \] (cá thể/ngày) với 0 ≤ t ≤ 10,

trong đó P(t) là số lượng cá thể vi sinh vật tại thời điểm t ngày kể từ thời điểm ban đầu. Biết rằng ban đầu quần thể có 1 000 cá thể.

a) Xác định hàm số P(t).

b) Ước lượng số cá thể của quần thể sau 5 ngày kể từ thời điểm ban đầu (kết quả làm tròn đến hàng trăm).

 

Xem đáp án » 19/09/2024 1,516

Câu 6:

Tìm:

a) \[\int {\left( {{5^x} + 1} \right)\left( {{5^x} - 1} \right)dx} \];

b) \[\int {{e^{ - 0,5x}}dx} \];

c) \[\int {{2^{x - 1}}{{.5}^{2x + 1}}dx} \].

Xem đáp án » 19/09/2024 1,274

Bình luận


Bình luận