Câu hỏi:

19/09/2024 1,395

Tìm đạo hàm của hàm số F(x) = \[\sqrt {4x + 1} \]. Từ đó, tính tích phân \[\int\limits_0^1 {\frac{1}{{\sqrt {4x + 1} }}dx} \].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: F(x) = \[\sqrt {4x + 1} \]

           \[F'\left( x \right) = \frac{2}{{\sqrt {4x + 1} }},x >  - \frac{1}{4}\].

Nhận thấy \[\frac{1}{{\sqrt {4x + 1} }} = \frac{{F'\left( x \right)}}{2}\].

Do đó \[\int\limits_0^1 {\frac{1}{{\sqrt {4x + 1} }}dx}  = \int\limits_0^1 {\frac{{F'\left( x \right)}}{2}dx} \]

                                 \[ = \frac{1}{2}\int\limits_0^1 {F'\left( x \right)dx = \left. {\frac{1}{2}F\left( x \right)} \right|_0^1} \]

                                \[ = \frac{1}{2}\left[ {F\left( 1 \right) - F\left( 0 \right)} \right] = \frac{1}{2}\left( {\sqrt 5  - 1} \right).\]

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một vật đang ở nhiệt độ 100℃ thì được đặt vào môi trường có nhiệt độ 30℃. Kể từ đó, nhiệt độ của vật giảm dần theo tốc dộ

\[T'\left( t \right) =  - 140.{e^{ - 2t}}\] (℃/phút),

trong đó T(t) là nhiệt độ tính theo ℃ tại thời điểm t phút kể từ khi được đặt trong môi trường.
Xác định nhiệt độ của vật ở thời điểm 3 phút kể từ khi được đặt vào môi trường (kết quả làm tròn đến hàng phần mười của ℃).

Xem đáp án » 19/09/2024 7,846

Câu 2:

Biết rằng đồ thị của hàm số y = f(x) đi qua điểm (−1; 3) và tiếp tuyến của đồ thị này tại mỗi điểm (x; f(x)) có hệ số góc là 3x2 – 4x + 1. Tìm f(2).

Xem đáp án » 19/09/2024 3,697

Câu 3:

Sau khi được bắn lên từ mặt đất theo phương thẳng đứng, một vật chuyển động với vận tốc v(t) = 20 – 10t (m/s) với 0 ≤ t ≤ 4.

a) Xác định độ cao của vật (tính theo mét) tại thời điểm t = 3.

b) Tính quãng đường vật đi được trong 3 giây đầu.

Xem đáp án » 19/09/2024 3,604

Câu 4:

Cho hàm số  \[f\left( x \right) = \left\{ \begin{array}{l}{x^2},{\rm{ }}x \le 1,\\\frac{1}{x},{\rm{ }}x > 1.\end{array} \right.\]

a) Chứng tỏ rằng hàn số f(x) liên tục trên ℝ.

b) Tính \[\int\limits_{ - 1}^2 {f\left( x \right)dx} \].

Xem đáp án » 19/09/2024 3,060

Câu 5:

Cho hàm số f(x) có đạo hàm \[f'\left( x \right) = \frac{{\sqrt x  - 1}}{x}\], x > 0. Tính giá trị của f(4) −  f(1).

Xem đáp án » 19/09/2024 2,119

Câu 6:

Cho hàm số f(x) liên tục trên ℝ và thỏa mãn \[\int\limits_0^4 {f\left( x \right)dx =  - 2} \];  \[\int\limits_0^5 {f\left( t \right)dt = 4} \]. Tính \[\int\limits_4^5 {f\left( x \right)dx} \].

Xem đáp án » 19/09/2024 1,972
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua