Câu hỏi:
19/09/2024 483Sau khi được bắn lên từ mặt đất theo phương thẳng đứng, một vật chuyển động với vận tốc v(t) = 20 – 10t (m/s) với 0 ≤ t ≤ 4.
a) Xác định độ cao của vật (tính theo mét) tại thời điểm t = 3.
b) Tính quãng đường vật đi được trong 3 giây đầu.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Kí hiệu h(t) là độ cao của vật (tính theo mét) tại thời điểm t (0 ≤ t ≤ 4).
Ta có: h'(t) = v(t) và h(0) = 0.
Từ đó, \[h\left( 3 \right) - h\left( 0 \right) = \int\limits_0^3 {v\left( t \right)dt = \int\limits_0^3 {\left( {20 - 10t} \right)dt} } \]
\[ = \left. {\left( {20t - 5{t^2}} \right)} \right|_0^3 = 15{\rm{ }}\left( m \right).\]
Suy ra h(3) = 15 + h(0) = 15 + 0 = 15 (m).
b) Quãng đường vật đi được trong 3 giây đầu là:
s = \[\int\limits_0^3 {\left| {v\left( t \right)} \right|dt = } \int\limits_0^3 {\left| {20 - 10t} \right|dt} \]
\[ = \int\limits_0^2 {\left( {20 - 10t} \right)dt + \int\limits_2^3 {\left( {10t - 20} \right)} } dt\]
\[ = \left. {\left( {20t - 5{t^2}} \right)} \right|_0^2 + \left. {\left( {5{t^2} - 20t} \right)} \right|_0^2\] = 20 + 5 = 25 (m).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một vật đang ở nhiệt độ 100℃ thì được đặt vào môi trường có nhiệt độ 30℃. Kể từ đó, nhiệt độ của vật giảm dần theo tốc dộ
\[T'\left( t \right) = - 140.{e^{ - 2t}}\] (℃/phút),
trong đó T(t) là nhiệt độ tính theo ℃ tại thời điểm t phút kể từ khi được đặt trong môi trường.
Xác định nhiệt độ của vật ở thời điểm 3 phút kể từ khi được đặt vào môi trường (kết quả làm tròn đến hàng phần mười của ℃).
Câu 2:
Biết rằng đồ thị của hàm số y = f(x) đi qua điểm (−1; 3) và tiếp tuyến của đồ thị này tại mỗi điểm (x; f(x)) có hệ số góc là 3x2 – 4x + 1. Tìm f(2).
Câu 3:
Cho hàm số \[f\left( x \right) = \left\{ \begin{array}{l}{x^2},{\rm{ }}x \le 1,\\\frac{1}{x},{\rm{ }}x > 1.\end{array} \right.\]
a) Chứng tỏ rằng hàn số f(x) liên tục trên ℝ.
b) Tính \[\int\limits_{ - 1}^2 {f\left( x \right)dx} \].
Câu 4:
Cho hàm số f(x) có đạo hàm \[f'\left( x \right) = \frac{{\sqrt x - 1}}{x}\], x > 0. Tính giá trị của f(4) − f(1).
Câu 5:
Tìm đạo hàm của hàm số F(x) = \[\sqrt {4x + 1} \]. Từ đó, tính tích phân \[\int\limits_0^1 {\frac{1}{{\sqrt {4x + 1} }}dx} \].
Câu 6:
Tính các tích phân sau:
a) \[\int\limits_{ - 1}^2 {\left| {{x^2} + x - 2} \right|} dx\];
b) \[\int\limits_{ - 1}^1 {\left| {{e^x} - 1} \right|} dx\].
về câu hỏi!