Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Môn học
Chương trình khác
55 lượt thi 13 câu hỏi
119 lượt thi
Thi ngay
41 lượt thi
147 lượt thi
110 lượt thi
37 lượt thi
106 lượt thi
54 lượt thi
Câu 1:
Tính các tích phân sau:
a) \[\int\limits_0^2 {\left( {3x - 2} \right)\left( {3x + 2} \right)dx} \];
b) \[\int\limits_1^2 {{t^2}\left( {5{t^2} - 2} \right)dt} \];
c) \[\int\limits_{ - 1}^1 {\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)dx} \].
a) \[\int\limits_1^2 {\frac{{1 - 2x}}{{{x^2}}}dx} \];
b) \[\int\limits_1^2 {{{\left( {\sqrt x + \frac{1}{{\sqrt x }}} \right)}^2}dx} \];
c) \[\int\limits_1^4 {\frac{{x - 4}}{{\sqrt x + 2}}dx} \].
Câu 2:
a) \[\int\limits_1^3 {{e^{x - 2}}dx} \];
b) \[\int\limits_0^1 {{{\left( {{2^x} - 1} \right)}^2}dx} \];
c) \[\int\limits_0^1 {\frac{{{e^{2x}} - 1}}{{{e^x} + 1}}dx} \].
Câu 3:
a) \[\int\limits_0^\pi {\left( {2\cos x + 1} \right)dx} \];
b) \[\int\limits_0^\pi {\left( {1 + \cot x} \right){\rm{sinx}}dx} \];
c) \[\int\limits_0^{\frac{\pi }{4}} {{{\tan }^2}xdx} \].
Câu 4:
Cho hàm số f(x) có đạo hàm \[f'\left( x \right) = \frac{{\sqrt x - 1}}{x}\], x > 0. Tính giá trị của f(4) − f(1).
Câu 5:
Tính:
a) \[A = \int\limits_{ - 1}^2 {\left( {x - 4{x^2}} \right)dx + 4\int\limits_{ - 1}^2 {\left( {{x^2} - 1} \right)dx} } \];
b) \[B = \int\limits_{ - 1}^0 {\left( {{x^3} - 6x} \right)dx} + \int\limits_0^1 {\left( {{t^3} - 6t} \right)dt} \].
Câu 6:
Cho hàm số f(x) liên tục trên ℝ và thỏa mãn \[\int\limits_0^4 {f\left( x \right)dx = - 2} \]; \[\int\limits_0^5 {f\left( t \right)dt = 4} \]. Tính \[\int\limits_4^5 {f\left( x \right)dx} \].
Câu 7:
a) \[\int\limits_{ - 1}^2 {\left| {{x^2} + x - 2} \right|} dx\];
b) \[\int\limits_{ - 1}^1 {\left| {{e^x} - 1} \right|} dx\].
Câu 8:
Tìm đạo hàm của hàm số F(x) = \[\sqrt {4x + 1} \]. Từ đó, tính tích phân \[\int\limits_0^1 {\frac{1}{{\sqrt {4x + 1} }}dx} \].
Câu 9:
Biết rằng đồ thị của hàm số y = f(x) đi qua điểm (−1; 3) và tiếp tuyến của đồ thị này tại mỗi điểm (x; f(x)) có hệ số góc là 3x2 – 4x + 1. Tìm f(2).
Câu 10:
Cho hàm số \[f\left( x \right) = \left\{ \begin{array}{l}{x^2},{\rm{ }}x \le 1,\\\frac{1}{x},{\rm{ }}x > 1.\end{array} \right.\]
a) Chứng tỏ rằng hàn số f(x) liên tục trên ℝ.
b) Tính \[\int\limits_{ - 1}^2 {f\left( x \right)dx} \].
Câu 11:
Một vật đang ở nhiệt độ 100℃ thì được đặt vào môi trường có nhiệt độ 30℃. Kể từ đó, nhiệt độ của vật giảm dần theo tốc dộ
\[T'\left( t \right) = - 140.{e^{ - 2t}}\] (℃/phút),
trong đó T(t) là nhiệt độ tính theo ℃ tại thời điểm t phút kể từ khi được đặt trong môi trường. Xác định nhiệt độ của vật ở thời điểm 3 phút kể từ khi được đặt vào môi trường (kết quả làm tròn đến hàng phần mười của ℃).
Câu 12:
Sau khi được bắn lên từ mặt đất theo phương thẳng đứng, một vật chuyển động với vận tốc v(t) = 20 – 10t (m/s) với 0 ≤ t ≤ 4.
a) Xác định độ cao của vật (tính theo mét) tại thời điểm t = 3.
b) Tính quãng đường vật đi được trong 3 giây đầu.
11 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com