Câu hỏi:
19/09/2024 1,079
Tính các tích phân sau:
a) \[\int\limits_{ - 1}^2 {\left| {{x^2} + x - 2} \right|} dx\];
b) \[\int\limits_{ - 1}^1 {\left| {{e^x} - 1} \right|} dx\].
Tính các tích phân sau:
a) \[\int\limits_{ - 1}^2 {\left| {{x^2} + x - 2} \right|} dx\];
b) \[\int\limits_{ - 1}^1 {\left| {{e^x} - 1} \right|} dx\].
Quảng cáo
Trả lời:
a) Ta có: x2 + x – 2 = 0 ⇔ (x + 2)(x – 1) = 0 ⇔ x = 1 hoặc x = −2.
Ta có: x2 + x – 2 ≤ 0 với mọi x ∈ [−1; 1] và x2 + x – 2 ≤ 0 với mọi x ∈ [1; 2].
Suy ra, \[\int\limits_{ - 1}^2 {\left| {{x^2} + x - 2} \right|} dx\]
\[ = \int\limits_{ - 1}^1 {\left[ { - \left( {{x^2} + x - 2} \right)} \right]} dx + \int\limits_1^2 {\left( {{x^2} + x - 2} \right)dx} \]
\[ = \left. { - \left( {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} - 2x} \right)} \right|_{ - 1}^1 + \left. {\left( {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} - 2x} \right)} \right|_1^2 = \frac{{31}}{6}.\]
b) \[\int\limits_{ - 1}^1 {\left| {{e^x} - 1} \right|} dx\]
Ta có: ex – 1 = 0 ⇔ x = 0.
Ta có ex – 1 ≤ 0 với mọi x ∈ [−1; 0] và ex – 1 ≥ 0 với mọi x ∈ [0; 1].
Từ đó, \[\int\limits_{ - 1}^1 {\left| {{e^x} - 1} \right|} dx = \int\limits_{ - 1}^0 {\left( {1 - {e^x}} \right)dx} + \int\limits_0^1 {\left( {{e^x} - 1} \right)dx} \]
\[ = \left. {\left( {x - {e^x}} \right)} \right|_{ - 1}^0 + \left. {\left( {{e^x} - x} \right)} \right|_0^1 = e + \frac{1}{e} - 2\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \[\int\limits_0^3 {T'\left( t \right)dt} = \int\limits_0^3 {\left( { - 140{e^{ - 2t}}} \right)dt} \]
\[ = - 140\int\limits_0^3 {{{\left( {{e^{ - 2}}} \right)}^t}dt} \]
\[ = \left. {\frac{{ - 140{e^{ - 2t}}}}{{\ln {e^{ - 2}}}}} \right|_0^3 = 70\left( {{e^{ - 6}} - 1} \right)\].
Theo đề, T(0) = 100℃.
Ta có: T(3) – T(0) = 70(e−6 – 1) ⇒ T(3) = 100 + 70(e−6 – 1) ≈ 30,2℃.
Vậy nhiệt độ của vật ở thời điểm 3 phút kể từ khi đặt vào môi trường là 30,2℃.
Lời giải
a) Kí hiệu h(t) là độ cao của vật (tính theo mét) tại thời điểm t (0 ≤ t ≤ 4).
Ta có: h'(t) = v(t) và h(0) = 0.
Từ đó, \[h\left( 3 \right) - h\left( 0 \right) = \int\limits_0^3 {v\left( t \right)dt = \int\limits_0^3 {\left( {20 - 10t} \right)dt} } \]
\[ = \left. {\left( {20t - 5{t^2}} \right)} \right|_0^3 = 15{\rm{ }}\left( m \right).\]
Suy ra h(3) = 15 + h(0) = 15 + 0 = 15 (m).
b) Quãng đường vật đi được trong 3 giây đầu là:
s = \[\int\limits_0^3 {\left| {v\left( t \right)} \right|dt = } \int\limits_0^3 {\left| {20 - 10t} \right|dt} \]
\[ = \int\limits_0^2 {\left( {20 - 10t} \right)dt + \int\limits_2^3 {\left( {10t - 20} \right)} } dt\]
\[ = \left. {\left( {20t - 5{t^2}} \right)} \right|_0^2 + \left. {\left( {5{t^2} - 20t} \right)} \right|_0^2\] = 20 + 5 = 25 (m).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.