Câu hỏi:
19/09/2024 97Tính:
a) \[A = \int\limits_{ - 1}^2 {\left( {x - 4{x^2}} \right)dx + 4\int\limits_{ - 1}^2 {\left( {{x^2} - 1} \right)dx} } \];
b) \[B = \int\limits_{ - 1}^0 {\left( {{x^3} - 6x} \right)dx} + \int\limits_0^1 {\left( {{t^3} - 6t} \right)dt} \].
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác
Quảng cáo
Trả lời:
a) \[A = \int\limits_{ - 1}^2 {\left( {x - 4{x^2}} \right)dx + 4\int\limits_{ - 1}^2 {\left( {{x^2} - 1} \right)dx} } \]
\[ = \int\limits_{ - 1}^2 {\left( {x - 4{x^2}} \right)dx + \int\limits_{ - 1}^2 {4\left( {{x^2} - 1} \right)dx} } \]
\[ = \int\limits_{ - 1}^2 {\left( {x - 4{x^2} + 4{x^2} - 4} \right)dx = \int\limits_{ - 1}^2 {\left( {x - 4} \right)} } dx\]
\[ = \left. {\left( {\frac{{{x^2}}}{2} - 4x} \right)} \right|_{ - 1}^2 = - \frac{{21}}{2}\].
Vậy \[A = - \frac{{21}}{2}\].
b) \[B = \int\limits_{ - 1}^0 {\left( {{x^3} - 6x} \right)dx} + \int\limits_0^1 {\left( {{t^3} - 6t} \right)dt} \]
\[ = \int\limits_{ - 1}^0 {\left( {{x^3} - 6x} \right)dx} + \int\limits_0^1 {\left( {{x^3} - 6x} \right)dx} \]
\[ = \int\limits_{ - 1}^1 {\left( {{x^3} - 6x} \right)dx} = \left. {\left( {\frac{{{x^4}}}{4} - 3{x^2}} \right)} \right|_{ - 1}^1 = 0\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một vật đang ở nhiệt độ 100℃ thì được đặt vào môi trường có nhiệt độ 30℃. Kể từ đó, nhiệt độ của vật giảm dần theo tốc dộ
\[T'\left( t \right) = - 140.{e^{ - 2t}}\] (℃/phút),
trong đó T(t) là nhiệt độ tính theo ℃ tại thời điểm t phút kể từ khi được đặt trong môi trường.
Xác định nhiệt độ của vật ở thời điểm 3 phút kể từ khi được đặt vào môi trường (kết quả làm tròn đến hàng phần mười của ℃).
Câu 2:
Biết rằng đồ thị của hàm số y = f(x) đi qua điểm (−1; 3) và tiếp tuyến của đồ thị này tại mỗi điểm (x; f(x)) có hệ số góc là 3x2 – 4x + 1. Tìm f(2).
Câu 3:
Cho hàm số \[f\left( x \right) = \left\{ \begin{array}{l}{x^2},{\rm{ }}x \le 1,\\\frac{1}{x},{\rm{ }}x > 1.\end{array} \right.\]
a) Chứng tỏ rằng hàn số f(x) liên tục trên ℝ.
b) Tính \[\int\limits_{ - 1}^2 {f\left( x \right)dx} \].
Câu 4:
Sau khi được bắn lên từ mặt đất theo phương thẳng đứng, một vật chuyển động với vận tốc v(t) = 20 – 10t (m/s) với 0 ≤ t ≤ 4.
a) Xác định độ cao của vật (tính theo mét) tại thời điểm t = 3.
b) Tính quãng đường vật đi được trong 3 giây đầu.
Câu 5:
Cho hàm số f(x) có đạo hàm \[f'\left( x \right) = \frac{{\sqrt x - 1}}{x}\], x > 0. Tính giá trị của f(4) − f(1).
Câu 6:
Tìm đạo hàm của hàm số F(x) = \[\sqrt {4x + 1} \]. Từ đó, tính tích phân \[\int\limits_0^1 {\frac{1}{{\sqrt {4x + 1} }}dx} \].
Câu 7:
Tính các tích phân sau:
a) \[\int\limits_{ - 1}^2 {\left| {{x^2} + x - 2} \right|} dx\];
b) \[\int\limits_{ - 1}^1 {\left| {{e^x} - 1} \right|} dx\].
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
về câu hỏi!