Câu hỏi:
19/09/2024 92Tính các tích phân sau:
a) \[\int\limits_1^3 {{e^{x - 2}}dx} \];
b) \[\int\limits_0^1 {{{\left( {{2^x} - 1} \right)}^2}dx} \];
c) \[\int\limits_0^1 {\frac{{{e^{2x}} - 1}}{{{e^x} + 1}}dx} \].
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) \[\int\limits_1^3 {{e^{x - 2}}dx} = \int\limits_1^3 {\frac{{{e^x}}}{{{e^2}}}dx} \]
\[ = \left. {\frac{{{e^x}}}{{{e^2}}}} \right|_1^3 = \frac{{{e^3}}}{{{e^2}}} - \frac{e}{{{e^2}}} = e - \frac{1}{e}\].
b) \[\int\limits_0^1 {{{\left( {{2^x} - 1} \right)}^2}dx} = \int\limits_0^1 {\left( {{4^x} - {{2.2}^x} + 1} \right)dx} \]
\[ = \left. {\left( {\frac{{{4^x}}}{{\ln 4}} - 2.\frac{{{2^x}}}{{\ln 2}} + x} \right)} \right|_0^1\]
\[ = 1 - \frac{1}{{2\ln 2}}\].
c) \[\int\limits_0^1 {\frac{{{e^{2x}} - 1}}{{{e^x} + 1}}dx} = \int\limits_0^1 {\frac{{\left( {{e^x} + 1} \right)\left( {{e^x} - 1} \right)}}{{{e^x} + 1}}dx} \]
\[ = \int\limits_0^1 {\left( {{e^x} - 1} \right)dx = \left. {\left( {{e^x} - x} \right)} \right|_0^1 = e - 2} \].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một vật đang ở nhiệt độ 100℃ thì được đặt vào môi trường có nhiệt độ 30℃. Kể từ đó, nhiệt độ của vật giảm dần theo tốc dộ
\[T'\left( t \right) = - 140.{e^{ - 2t}}\] (℃/phút),
trong đó T(t) là nhiệt độ tính theo ℃ tại thời điểm t phút kể từ khi được đặt trong môi trường.
Xác định nhiệt độ của vật ở thời điểm 3 phút kể từ khi được đặt vào môi trường (kết quả làm tròn đến hàng phần mười của ℃).
Câu 2:
Biết rằng đồ thị của hàm số y = f(x) đi qua điểm (−1; 3) và tiếp tuyến của đồ thị này tại mỗi điểm (x; f(x)) có hệ số góc là 3x2 – 4x + 1. Tìm f(2).
Câu 3:
Sau khi được bắn lên từ mặt đất theo phương thẳng đứng, một vật chuyển động với vận tốc v(t) = 20 – 10t (m/s) với 0 ≤ t ≤ 4.
a) Xác định độ cao của vật (tính theo mét) tại thời điểm t = 3.
b) Tính quãng đường vật đi được trong 3 giây đầu.
Câu 4:
Cho hàm số f(x) có đạo hàm \[f'\left( x \right) = \frac{{\sqrt x - 1}}{x}\], x > 0. Tính giá trị của f(4) − f(1).
Câu 5:
Cho hàm số \[f\left( x \right) = \left\{ \begin{array}{l}{x^2},{\rm{ }}x \le 1,\\\frac{1}{x},{\rm{ }}x > 1.\end{array} \right.\]
a) Chứng tỏ rằng hàn số f(x) liên tục trên ℝ.
b) Tính \[\int\limits_{ - 1}^2 {f\left( x \right)dx} \].
Câu 6:
Tính các tích phân sau:
a) \[\int\limits_{ - 1}^2 {\left| {{x^2} + x - 2} \right|} dx\];
b) \[\int\limits_{ - 1}^1 {\left| {{e^x} - 1} \right|} dx\].
về câu hỏi!