Câu hỏi:
19/09/2024 237
Tính các tích phân sau:
a) \[\int\limits_0^2 {\left( {3x - 2} \right)\left( {3x + 2} \right)dx} \];
b) \[\int\limits_1^2 {{t^2}\left( {5{t^2} - 2} \right)dt} \];
c) \[\int\limits_{ - 1}^1 {\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)dx} \].
Tính các tích phân sau:
a) \[\int\limits_0^2 {\left( {3x - 2} \right)\left( {3x + 2} \right)dx} \];
b) \[\int\limits_1^2 {{t^2}\left( {5{t^2} - 2} \right)dt} \];
c) \[\int\limits_{ - 1}^1 {\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)dx} \].
Quảng cáo
Trả lời:
a) \[\int\limits_0^2 {\left( {3x - 2} \right)\left( {3x + 2} \right)dx} = \int\limits_0^2 {\left( {9{x^2} - 4} \right)dx} \]
\[ = \left. {\left( {3{x^3} - 4x} \right)} \right|_0^2\]
= (3.23 – 4.2) – (3.03 – 4.0) = 16.
b) \[\int\limits_1^2 {{t^2}\left( {5{t^2} - 2} \right)dt} = \int\limits_1^2 {\left( {5{t^4} - 2{t^2}} \right)dt} \]
\[ = \left. {\left( {{t^5} - \frac{2}{3}{t^3}} \right)} \right|_1^2\]
\[ = \left( {{2^5} - \frac{2}{3}{{.2}^3}} \right) - \left( {{1^5} - \frac{2}{3}{{.1}^3}} \right)\]
\[ = \frac{{79}}{3}\].
c) \[\int\limits_{ - 1}^1 {\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)dx} = \int\limits_{ - 1}^1 {\left( {{x^3} - 8} \right)dx} \]
\[ = \left. {\left( {\frac{{{x^4}}}{4} - 8x} \right)} \right|_{ - 1}^1 = - 16\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \[\int\limits_0^3 {T'\left( t \right)dt} = \int\limits_0^3 {\left( { - 140{e^{ - 2t}}} \right)dt} \]
\[ = - 140\int\limits_0^3 {{{\left( {{e^{ - 2}}} \right)}^t}dt} \]
\[ = \left. {\frac{{ - 140{e^{ - 2t}}}}{{\ln {e^{ - 2}}}}} \right|_0^3 = 70\left( {{e^{ - 6}} - 1} \right)\].
Theo đề, T(0) = 100℃.
Ta có: T(3) – T(0) = 70(e−6 – 1) ⇒ T(3) = 100 + 70(e−6 – 1) ≈ 30,2℃.
Vậy nhiệt độ của vật ở thời điểm 3 phút kể từ khi đặt vào môi trường là 30,2℃.
Lời giải
a) Kí hiệu h(t) là độ cao của vật (tính theo mét) tại thời điểm t (0 ≤ t ≤ 4).
Ta có: h'(t) = v(t) và h(0) = 0.
Từ đó, \[h\left( 3 \right) - h\left( 0 \right) = \int\limits_0^3 {v\left( t \right)dt = \int\limits_0^3 {\left( {20 - 10t} \right)dt} } \]
\[ = \left. {\left( {20t - 5{t^2}} \right)} \right|_0^3 = 15{\rm{ }}\left( m \right).\]
Suy ra h(3) = 15 + h(0) = 15 + 0 = 15 (m).
b) Quãng đường vật đi được trong 3 giây đầu là:
s = \[\int\limits_0^3 {\left| {v\left( t \right)} \right|dt = } \int\limits_0^3 {\left| {20 - 10t} \right|dt} \]
\[ = \int\limits_0^2 {\left( {20 - 10t} \right)dt + \int\limits_2^3 {\left( {10t - 20} \right)} } dt\]
\[ = \left. {\left( {20t - 5{t^2}} \right)} \right|_0^2 + \left. {\left( {5{t^2} - 20t} \right)} \right|_0^2\] = 20 + 5 = 25 (m).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.