Câu hỏi:

19/09/2024 3,195

Cho K là một khoảng trên ℝ; F(x) là một nguyên hàm của hàm số f(x) trên K; G(x) là một nguyên hàm của hàm số g(x) trên K.

a) Nếu F(x) = G(x) thì f(x) = g(x).

b) Nếu f(x) = g(x) thì F(x) = G(x).

c) \[\int {f\left( x \right)dx = F\left( x \right) + C,{\rm{ }}C \in \mathbb{R}.} \]

d) \[\int {f'\left( x \right)dx = F\left( x \right) + C,{\rm{ }}C \in \mathbb{R}.} \]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đ

b) S

c) Đ

d) S

a) Giả sử hàm F(x) = G(x) = ax3 + bx2 + cx + d

Suy ra F'(x) = f(x) = 3ax2 + 2bx + c ; G'(x) = g(x) = 3ax2 + 2bx + c.

Do đó, nếu F(x) = g(x) thì f(x) = g(x).

b) Giả sử f(x) = g(x) = 3ax2 + 2bx + c.

Lúc này\[\int {f\left( x \right)dx = F\left( x \right) + {C_1},{\rm{ }}{C_1} \in \mathbb{R}} \];

Tồn tại trường hợp C1 ≠ C2 nên không thể khẳng định nếu f(x) = g(x) thì F(x) = G(x).

c) \[\int {f\left( x \right)dx = F\left( x \right) + C,{\rm{ }}C \in \mathbb{R}.} \]\[\int {g\left( x \right)dx = G\left( x \right) + {C_2},{\rm{ }}{C_2} \in \mathbb{R}.} \]

d) F(x) là một nguyên hàm của hàm số f(x) trên K do đó F'(x) = f(x) và F''(x) = f'(x).

Do đó, \[\int {f'\left( x \right)dx = f\left( x \right) + C,{\rm{ }}C \in \mathbb{R}.} \] Do đó d) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \[S = \int\limits_0^4 {\sqrt x dx = \int\limits_0^4 {{x^{\frac{1}{2}}}dx = \left. {\frac{2}{3}\sqrt {{x^3}} } \right|_0^4} }  = \frac{{16}}{3}.\]

           \[{S_1} = \int\limits_0^a {\sqrt x } dx = \left. {\frac{2}{3}\sqrt {{x^3}} } \right|_0^a = \frac{2}{3}\sqrt {{a^3}} \]

  Đường thẳng x = a (0 < a< 4) chia D thành hai phần có diện tích bằng nhau nên

  \[{S_1} = \frac{S}{2} \Leftrightarrow \frac{2}{3}\sqrt {{a^3}}  = \frac{8}{3}\]

             \[ \Leftrightarrow \sqrt {{a^3}}  = 4\]

                    \[ \Leftrightarrow {a^3} = 16 \Leftrightarrow a = 2\sqrt[3]{2}\].

Lời giải

a) S

b) Đ

c) Đ

d) S

a) Quan sát đồ thị, hàm số y = f(x) = ax2 + bx + c (a ≠ 0) đi qua các điểm (0; 4), (2; 0), (−2; 0).

Giải hệ phương trình:

\[\left\{ \begin{array}{l}a{.0^2} + b.0 + c = 4\\a{.2^2} + b.2 + c = 0\\a.{\left( { - 2} \right)^2} + b.\left( { - 2} \right) + c = 0\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}c = 4\\4a + 2b = - 4\\4a - 2b = - 4\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 0\\c = 4\end{array} \right.\].

Do đó y = f(x) = 4 – x2.

Ta có diện tích hình phẳng đó là:

\[S = \int\limits_{ - 2}^2 {\left| {f\left( x \right)} \right|} dx\]

\[ = \int\limits_{ - 2}^2 {\left| {4 - {x^2}} \right|} dx = \int\limits_{ - 2}^2 {\left( {4 - {x^2}} \right)dx} \]

  \[ = \left. {\left( {4x - \frac{{{x^3}}}{3}} \right)} \right|_{ - 2}^2 = \frac{{32}}{3}\].                

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay