Câu hỏi:
19/09/2024 3,513Giả sử tốc độ tăng trưởng của một quần thể muỗi thỏa mãn công thức N'(t) = 0,2N(t), 0 ≤ t ≤ 5,
trong đó t là thời gian tính theo ngày, N(t) là số cá thể muỗi tại thời điểm t. Biết rằng ban đầu quần thể muỗi có 2 000 cá thể.
a) Đặt y(t) = lnN(t), 0 ≤ t ≤ 5.
Chứng tỏ rằng y'(t) = 0,2. Từ đó, tìm N(t) với 0 ≤ t ≤ 5.
b) Tìm số lượng cá thể của quần thể muỗi sau 3 ngày (kết quả làm tròn đến hàng trăm).
Quảng cáo
Trả lời:
a) Ta có: \[y'\left( t \right) = {\left[ {\ln N\left( t \right)} \right]^\prime }\]
\[ = \frac{{N'\left( t \right)}}{{N\left( t \right)}} = \frac{{0,2N\left( t \right)}}{{N\left( t \right)}} = 0,2.\]
Suy ra \[y\left( t \right) = \int {y'\left( t \right)dt = \int {0,2dt = 0,2t + C.} } \]
Do đó, lnN(t) = 0,2t + C, suy ra N(t) = e0,2t + C = C0.e0,2 (với C0 = eC).
Ta có: N(0) = 2 000, suy ra C0 = 2 000.
Do đó, N(t) = 2 000.e0,2t, 0 ≤ t ≤ 5.
b) Ta có: N(3) = 2 000. e0,2.3 ≈ 3 600 (cá thể).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \[S = \int\limits_0^4 {\sqrt x dx = \int\limits_0^4 {{x^{\frac{1}{2}}}dx = \left. {\frac{2}{3}\sqrt {{x^3}} } \right|_0^4} } = \frac{{16}}{3}.\]
\[{S_1} = \int\limits_0^a {\sqrt x } dx = \left. {\frac{2}{3}\sqrt {{x^3}} } \right|_0^a = \frac{2}{3}\sqrt {{a^3}} \]
Đường thẳng x = a (0 < a< 4) chia D thành hai phần có diện tích bằng nhau nên
\[{S_1} = \frac{S}{2} \Leftrightarrow \frac{2}{3}\sqrt {{a^3}} = \frac{8}{3}\]
\[ \Leftrightarrow \sqrt {{a^3}} = 4\]
\[ \Leftrightarrow {a^3} = 16 \Leftrightarrow a = 2\sqrt[3]{2}\].
Lời giải
a) S |
b) Đ |
c) Đ |
d) S |
a) Quan sát đồ thị, hàm số y = f(x) = ax2 + bx + c (a ≠ 0) đi qua các điểm (0; 4), (2; 0), (−2; 0).
Giải hệ phương trình:
\[\left\{ \begin{array}{l}a{.0^2} + b.0 + c = 4\\a{.2^2} + b.2 + c = 0\\a.{\left( { - 2} \right)^2} + b.\left( { - 2} \right) + c = 0\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}c = 4\\4a + 2b = - 4\\4a - 2b = - 4\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 0\\c = 4\end{array} \right.\].
Do đó y = f(x) = 4 – x2.
Ta có diện tích hình phẳng đó là:
\[S = \int\limits_{ - 2}^2 {\left| {f\left( x \right)} \right|} dx\]
\[ = \int\limits_{ - 2}^2 {\left| {4 - {x^2}} \right|} dx = \int\limits_{ - 2}^2 {\left( {4 - {x^2}} \right)dx} \]
\[ = \left. {\left( {4x - \frac{{{x^3}}}{3}} \right)} \right|_{ - 2}^2 = \frac{{32}}{3}\].Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)