Câu hỏi:

19/09/2024 3,145

Giả sử tốc độ tăng trưởng của một quần thể muỗi thỏa mãn công thức N'(t) = 0,2N(t), 0 ≤ t ≤ 5,

trong đó t là thời gian tính theo ngày, N(t) là số cá thể muỗi tại thời điểm t. Biết rằng ban đầu quần thể muỗi có 2 000 cá thể.

a) Đặt y(t) = lnN(t), 0 ≤ t ≤ 5.

Chứng tỏ rằng y'(t) = 0,2. Từ đó, tìm N(t) với 0 ≤ t ≤ 5.

b) Tìm số lượng cá thể của quần thể muỗi sau 3 ngày (kết quả làm tròn đến hàng trăm).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có: \[y'\left( t \right) = {\left[ {\ln N\left( t \right)} \right]^\prime }\]

                        \[ = \frac{{N'\left( t \right)}}{{N\left( t \right)}} = \frac{{0,2N\left( t \right)}}{{N\left( t \right)}} = 0,2.\]

Suy ra \[y\left( t \right) = \int {y'\left( t \right)dt = \int {0,2dt = 0,2t + C.} } \]

Do đó, lnN(t) = 0,2t + C, suy ra N(t) = e0,2t + C = C0.e0,2 (với C0 = eC).

Ta có: N(0) = 2 000, suy ra C0 = 2 000.

Do đó, N(t) = 2 000.e0,2t, 0 ≤ t ≤ 5.

b) Ta có: N(3) = 2 000. e0,2.3 ≈ 3 600 (cá thể).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho D là hình phẳng giới hạn bởi đồ thị của đồ thị \[y = \sqrt x \], trục hoành và đường thẳng x = 4. Đường thẳng x = a (0 < a < 4) chia D thành hai phần có diện tích bằng nhau (Hình 3). Tính giá trị của a.

Cho D là hình phẳng giới hạn bởi đồ thị của đồ thịy = canx, trục hoành và đường thẳng x = 4. Đường thẳng x = a (0 < a < 4) chia D thành hai phần có diện tích bằng nhau (Hình 3). Tính giá trị của a. (ảnh 1)

Xem đáp án » 19/09/2024 8,200

Câu 2:

Một chiếc xe đang chuyển động với vận tốc với tốc độ v0 = 5 m/s thì tăng tốc với gia tốc không đổi x = 3 m/s2.

a) Sau 5 giây kể từ khi bắt đầu tăng tốc, tốc độ của xe là bao nhiêu?

b) Tính quãng đường xe đi được trong 5 giây đầu kể từ khi tăng tốc.

Xem đáp án » 19/09/2024 5,049

Câu 3:

Cho y = f(x) là hàm số bậc hai có đồ thị như Hình 1. Gọi S là diện tích của hình phẳng giới hạn bởi đồ thị của hàm số y = f(x) và trục hoành.

Cho y = f(x) là hàm số bậc hai có đồ thị như Hình 1. Gọi S là diện tích của hình phẳng giới hạn bởi đồ thị của hàm số y = f(x) và trục hoành.  a) f(x) = 4 – 2x2. (ảnh 1)

a) f(x) = 4 – 2x2.

b) \[S = \int\limits_{ - 2}^2 {\left| {f\left( x \right)} \right|} dx.\]

c) \[S = \int\limits_{ - 2}^2 {f\left( x \right)dx.} \]

d) \[S = \frac{{16}}{3}.\]

Xem đáp án » 19/09/2024 4,668

Câu 4:

Cho hàm số f(x) liên tục trên đoạn [1; 3] và thỏa mãn \[\int\limits_1^3 {\left[ {3{x^2} - 2f'\left( x \right)} \right]dx} = 4;{\rm{ }}f\left( 1 \right) = - 2\]. Giá trị f(3) là:

A. 9.

B. 11.

C. −13.

D. 19.

Xem đáp án » 19/09/2024 3,629

Câu 5:

Cho hàm số f(x) liên tục trên đoạn [0; 5]. Tính \[\int\limits_0^5 {f\left( x \right)dx} \], biết rằng \[\int\limits_0^3 {f\left( x \right)dx}  = 4;\int\limits_1^5 {f\left( x \right)dx = 6;\int\limits_1^3 {f\left( x \right)dx = 3.} } \]

Xem đáp án » 19/09/2024 3,433

Câu 6:

Cho hàm số f(x) = 3x – 1. Biết rằng a là số thỏa mãn \[\int\limits_0^1 {{f^2}\left( x \right)dx = a{{\left[ {\int\limits_0^1 {f\left( x \right)dx} } \right]}^2}} \]. Giá trị của a là:

A. 2.

B. \[\frac{1}{4}.\]

C. 4.

D. \[\frac{1}{2}.\]

Xem đáp án » 19/09/2024 3,344
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua