Câu hỏi:
19/09/2024 668Một cột bê tông hình trụ có chiều cao 9 m. Nếu cắt cột bê tông bằng mặt phẳng nằm ngang cách chân cột x (m) thì mặt cắt là hình tròn có bán kính \[1 - \frac{{\sqrt x }}{4}\] (m) với 0 ≤ x ≤ 9. Tính thể tích của cột bê tông (kết quả làm tròn đến hàng phần trăm của mét khối).
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có thể tích khối tròn xoay đó là:
\[V = \pi \int\limits_0^9 {{{\left( {1 - \frac{{\sqrt x }}{4}} \right)}^2}dx} \]
= \[{\rm{ }}\pi \int\limits_0^9 {\left( {1 - \frac{1}{2}\sqrt x + \frac{1}{{16}}x} \right)dx} \]
\[ = \left. {\pi \left( {x - \frac{1}{3}x\sqrt x + \frac{1}{{32}}{x^2}} \right)} \right|_0^9 = \frac{{81\pi }}{{32}}\].
Vậy \[V = \frac{{81\pi }}{{32}} \approx 7,95\] (m).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một chiếc xe đang chuyển động với vận tốc với tốc độ v0 = 5 m/s thì tăng tốc với gia tốc không đổi x = 3 m/s2.
a) Sau 5 giây kể từ khi bắt đầu tăng tốc, tốc độ của xe là bao nhiêu?
b) Tính quãng đường xe đi được trong 5 giây đầu kể từ khi tăng tốc.
Câu 2:
Giả sử tốc độ tăng trưởng của một quần thể muỗi thỏa mãn công thức N'(t) = 0,2N(t), 0 ≤ t ≤ 5,
trong đó t là thời gian tính theo ngày, N(t) là số cá thể muỗi tại thời điểm t. Biết rằng ban đầu quần thể muỗi có 2 000 cá thể.
a) Đặt y(t) = lnN(t), 0 ≤ t ≤ 5.
Chứng tỏ rằng y'(t) = 0,2. Từ đó, tìm N(t) với 0 ≤ t ≤ 5.
b) Tìm số lượng cá thể của quần thể muỗi sau 3 ngày (kết quả làm tròn đến hàng trăm).
Câu 3:
Cho hàm số f(x) = 3x – 1. Biết rằng a là số thỏa mãn \[\int\limits_0^1 {{f^2}\left( x \right)dx = a{{\left[ {\int\limits_0^1 {f\left( x \right)dx} } \right]}^2}} \]. Giá trị của a là:
A. 2.
B. \[\frac{1}{4}.\]
C. 4.
D. \[\frac{1}{2}.\]
Câu 4:
Cho D là hình phẳng giới hạn bởi đồ thị của đồ thị \[y = \sqrt x \], trục hoành và đường thẳng x = 4. Đường thẳng x = a (0 < a < 4) chia D thành hai phần có diện tích bằng nhau (Hình 3). Tính giá trị của a.
Câu 5:
Cho hàm số f(x) liên tục trên đoạn [1; 3] và thỏa mãn \[\int\limits_1^3 {\left[ {3{x^2} - 2f'\left( x \right)} \right]dx} = 4;{\rm{ }}f\left( 1 \right) = - 2\]. Giá trị f(3) là:
A. 9.
B. 11.
C. −13.
D. 19.
Câu 6:
Cho K là một khoảng trên ℝ; F(x) là một nguyên hàm của hàm số f(x) trên K; G(x) là một nguyên hàm của hàm số g(x) trên K.
a) Nếu F(x) = G(x) thì f(x) = g(x).
b) Nếu f(x) = g(x) thì F(x) = G(x).
c) \[\int {f\left( x \right)dx = F\left( x \right) + C,{\rm{ }}C \in \mathbb{R}.} \]
d) \[\int {f'\left( x \right)dx = F\left( x \right) + C,{\rm{ }}C \in \mathbb{R}.} \]
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
về câu hỏi!