Một cột bê tông hình trụ có chiều cao 9 m. Nếu cắt cột bê tông bằng mặt phẳng nằm ngang cách chân cột x (m) thì mặt cắt là hình tròn có bán kính \[1 - \frac{{\sqrt x }}{4}\] (m) với 0 ≤ x ≤ 9. Tính thể tích của cột bê tông (kết quả làm tròn đến hàng phần trăm của mét khối).
Một cột bê tông hình trụ có chiều cao 9 m. Nếu cắt cột bê tông bằng mặt phẳng nằm ngang cách chân cột x (m) thì mặt cắt là hình tròn có bán kính \[1 - \frac{{\sqrt x }}{4}\] (m) với 0 ≤ x ≤ 9. Tính thể tích của cột bê tông (kết quả làm tròn đến hàng phần trăm của mét khối).
Quảng cáo
Trả lời:
Ta có thể tích khối tròn xoay đó là:
\[V = \pi \int\limits_0^9 {{{\left( {1 - \frac{{\sqrt x }}{4}} \right)}^2}dx} \]
= \[{\rm{ }}\pi \int\limits_0^9 {\left( {1 - \frac{1}{2}\sqrt x + \frac{1}{{16}}x} \right)dx} \]
\[ = \left. {\pi \left( {x - \frac{1}{3}x\sqrt x + \frac{1}{{32}}{x^2}} \right)} \right|_0^9 = \frac{{81\pi }}{{32}}\].
Vậy \[V = \frac{{81\pi }}{{32}} \approx 7,95\] (m).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \[S = \int\limits_0^4 {\sqrt x dx = \int\limits_0^4 {{x^{\frac{1}{2}}}dx = \left. {\frac{2}{3}\sqrt {{x^3}} } \right|_0^4} } = \frac{{16}}{3}.\]
\[{S_1} = \int\limits_0^a {\sqrt x } dx = \left. {\frac{2}{3}\sqrt {{x^3}} } \right|_0^a = \frac{2}{3}\sqrt {{a^3}} \]
Đường thẳng x = a (0 < a< 4) chia D thành hai phần có diện tích bằng nhau nên
\[{S_1} = \frac{S}{2} \Leftrightarrow \frac{2}{3}\sqrt {{a^3}} = \frac{8}{3}\]
\[ \Leftrightarrow \sqrt {{a^3}} = 4\]
\[ \Leftrightarrow {a^3} = 16 \Leftrightarrow a = 2\sqrt[3]{2}\].
Lời giải
a) Ta có:
Mà v(0) = v0 = 5 nên 3.0 + C = 5 hay C = 5.
Suy ra v(t) = 3t + 5 (m/s), do đó v(5) = 3.5 + 5 = 20 (m/s).
b) Quãng đường xe đi được trong 5 giây đầu kể từ khi tăng tốc là:
\[s = \int\limits_0^5 {v\left( t \right)dt} = \int\limits_0^5 {\left( {3t + 5} \right)dt} = \left. {\left( {\frac{3}{2}{t^2} + 5t} \right)} \right|_0^5\] = 62,5 (m).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

