Câu hỏi:
19/09/2024 50Tính:
a) \[\int\limits_1^2 {\frac{{{x^4} + {x^3} + {x^2} + x + 1}}{{{x^2}}}dx} \];
b) \[\int\limits_1^2 {\frac{{x{e^x} + 1}}{x}dx} \];
c) \[\int\limits_0^1 {\frac{{{8^x} + 1}}{{{2^x} + 1}}dx} \];
d) \[\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\frac{{1 + {{\sin }^2}x}}{{1 - {{\cos }^2}x}}dx} \].
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có: \[\int\limits_1^2 {\frac{{{x^4} + {x^3} + {x^2} + x + 1}}{{{x^2}}}dx} \]
\[ = \int\limits_1^2 {\left( {{x^2} + x + 1 + \frac{1}{x} + \frac{1}{{{x^2}}}} \right)dx} \]
\[ = \left. {\left( {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} + x + \ln \left| x \right| - \frac{1}{x}} \right)} \right|_1^2\]
\[ = \ln 2 + \frac{{16}}{3}.\]
b) Ta có: \[\int\limits_1^2 {\frac{{x{e^x} + 1}}{x}dx} = \int\limits_1^2 {\left( {{e^x} + \frac{1}{x}} \right)dx} \]
\[ = \left. {\left( {{e^x} + \ln \left| x \right|} \right)} \right|_1^2\]
= e2 − e + ln2.
c) Ta có:
\[\int\limits_0^1 {\frac{{{8^x} + 1}}{{{2^x} + 1}}dx} = \int\limits_0^1 {\frac{{\left( {{2^x} + 1} \right)\left( {{4^x} - {2^x} + 1} \right)}}{{\left( {{2^x} + 1} \right)}}dx} \]
\[ = \int\limits_0^1 {\left( {{4^x} - {2^x} + 1} \right)dx} \]
\[ = \left. {\left( {\frac{{{4^x}}}{{\ln 4}} - \frac{{{2^x}}}{{\ln 2}} + x} \right)} \right|_0^1\]
\[ = \frac{4}{{\ln 4}} - \frac{2}{{\ln 2}} + 1 - \frac{1}{{\ln 4}} + \frac{1}{{\ln 2}}\]
\[ = 1 + \frac{1}{{2\ln 2}}\].
d) Ta có:
\[\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\frac{{1 + {{\sin }^2}x}}{{1 - {{\cos }^2}x}}dx} = \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\frac{{1 + {{\sin }^2}x}}{{{{\sin }^2}x}}dx} \]
\[ = \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\left( {\frac{1}{{{{\sin }^2}x}} + 1} \right)dx} \]
\[ = \left. {\left( { - \cot x + x} \right)} \right|_{_{\frac{\pi }{4}}}^{\frac{\pi }{2}} = 1 + \frac{\pi }{4}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một chiếc xe đang chuyển động với vận tốc với tốc độ v0 = 5 m/s thì tăng tốc với gia tốc không đổi x = 3 m/s2.
a) Sau 5 giây kể từ khi bắt đầu tăng tốc, tốc độ của xe là bao nhiêu?
b) Tính quãng đường xe đi được trong 5 giây đầu kể từ khi tăng tốc.
Câu 2:
Cho hàm số f(x) = 3x – 1. Biết rằng a là số thỏa mãn \[\int\limits_0^1 {{f^2}\left( x \right)dx = a{{\left[ {\int\limits_0^1 {f\left( x \right)dx} } \right]}^2}} \]. Giá trị của a là:
A. 2.
B. \[\frac{1}{4}.\]
C. 4.
D. \[\frac{1}{2}.\]
Câu 3:
Cho K là một khoảng trên ℝ; F(x) là một nguyên hàm của hàm số f(x) trên K; G(x) là một nguyên hàm của hàm số g(x) trên K.
a) Nếu F(x) = G(x) thì f(x) = g(x).
b) Nếu f(x) = g(x) thì F(x) = G(x).
c) \[\int {f\left( x \right)dx = F\left( x \right) + C,{\rm{ }}C \in \mathbb{R}.} \]
d) \[\int {f'\left( x \right)dx = F\left( x \right) + C,{\rm{ }}C \in \mathbb{R}.} \]
Câu 4:
Giả sử tốc độ tăng trưởng của một quần thể muỗi thỏa mãn công thức N'(t) = 0,2N(t), 0 ≤ t ≤ 5,
trong đó t là thời gian tính theo ngày, N(t) là số cá thể muỗi tại thời điểm t. Biết rằng ban đầu quần thể muỗi có 2 000 cá thể.
a) Đặt y(t) = lnN(t), 0 ≤ t ≤ 5.
Chứng tỏ rằng y'(t) = 0,2. Từ đó, tìm N(t) với 0 ≤ t ≤ 5.
b) Tìm số lượng cá thể của quần thể muỗi sau 3 ngày (kết quả làm tròn đến hàng trăm).
Câu 5:
Cho D là hình phẳng giới hạn bởi đồ thị của đồ thị \[y = \sqrt x \], trục hoành và đường thẳng x = 4. Đường thẳng x = a (0 < a < 4) chia D thành hai phần có diện tích bằng nhau (Hình 3). Tính giá trị của a.
Câu 6:
Cho hàm số f(x) liên tục trên đoạn [1; 3] và thỏa mãn \[\int\limits_1^3 {\left[ {3{x^2} - 2f'\left( x \right)} \right]dx} = 4;{\rm{ }}f\left( 1 \right) = - 2\]. Giá trị f(3) là:
A. 9.
B. 11.
C. −13.
D. 19.
Câu 7:
Một cột bê tông hình trụ có chiều cao 9 m. Nếu cắt cột bê tông bằng mặt phẳng nằm ngang cách chân cột x (m) thì mặt cắt là hình tròn có bán kính \[1 - \frac{{\sqrt x }}{4}\] (m) với 0 ≤ x ≤ 9. Tính thể tích của cột bê tông (kết quả làm tròn đến hàng phần trăm của mét khối).
về câu hỏi!