Câu hỏi:
19/09/2024 582Tính thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi đồ thị của hàm số y = 1 + x2, trục hoành và hai đường thẳng x = −1, x = 1 quanh trục Ox.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác
Quảng cáo
Trả lời:
Ta có thể tích khối tròn xoay đó là:
\[V = \pi \int\limits_{ - 1}^1 {{{\left( {1 + {x^2}} \right)}^2}dx = } \pi \int\limits_{ - 1}^1 {\left( {1 + 2{x^2} + {x^4}} \right)dx} \]
\[ = \left. {\pi \left( {x + \frac{2}{3}{x^3} + \frac{{{x^5}}}{5}} \right)} \right|_{ - 1}^1 = \frac{{56\pi }}{{15}}.\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một chiếc xe đang chuyển động với vận tốc với tốc độ v0 = 5 m/s thì tăng tốc với gia tốc không đổi x = 3 m/s2.
a) Sau 5 giây kể từ khi bắt đầu tăng tốc, tốc độ của xe là bao nhiêu?
b) Tính quãng đường xe đi được trong 5 giây đầu kể từ khi tăng tốc.
Câu 2:
Cho D là hình phẳng giới hạn bởi đồ thị của đồ thị \[y = \sqrt x \], trục hoành và đường thẳng x = 4. Đường thẳng x = a (0 < a < 4) chia D thành hai phần có diện tích bằng nhau (Hình 3). Tính giá trị của a.
Câu 3:
Giả sử tốc độ tăng trưởng của một quần thể muỗi thỏa mãn công thức N'(t) = 0,2N(t), 0 ≤ t ≤ 5,
trong đó t là thời gian tính theo ngày, N(t) là số cá thể muỗi tại thời điểm t. Biết rằng ban đầu quần thể muỗi có 2 000 cá thể.
a) Đặt y(t) = lnN(t), 0 ≤ t ≤ 5.
Chứng tỏ rằng y'(t) = 0,2. Từ đó, tìm N(t) với 0 ≤ t ≤ 5.
b) Tìm số lượng cá thể của quần thể muỗi sau 3 ngày (kết quả làm tròn đến hàng trăm).
Câu 4:
Cho hàm số f(x) = 3x – 1. Biết rằng a là số thỏa mãn \[\int\limits_0^1 {{f^2}\left( x \right)dx = a{{\left[ {\int\limits_0^1 {f\left( x \right)dx} } \right]}^2}} \]. Giá trị của a là:
A. 2.
B. \[\frac{1}{4}.\]
C. 4.
D. \[\frac{1}{2}.\]
Câu 5:
Cho hàm số f(x) liên tục trên đoạn [1; 3] và thỏa mãn \[\int\limits_1^3 {\left[ {3{x^2} - 2f'\left( x \right)} \right]dx} = 4;{\rm{ }}f\left( 1 \right) = - 2\]. Giá trị f(3) là:
A. 9.
B. 11.
C. −13.
D. 19.
Câu 6:
Cho K là một khoảng trên ℝ; F(x) là một nguyên hàm của hàm số f(x) trên K; G(x) là một nguyên hàm của hàm số g(x) trên K.
a) Nếu F(x) = G(x) thì f(x) = g(x).
b) Nếu f(x) = g(x) thì F(x) = G(x).
c) \[\int {f\left( x \right)dx = F\left( x \right) + C,{\rm{ }}C \in \mathbb{R}.} \]
d) \[\int {f'\left( x \right)dx = F\left( x \right) + C,{\rm{ }}C \in \mathbb{R}.} \]
Câu 7:
Cho hàm số f(x) liên tục trên đoạn [0; 5]. Tính \[\int\limits_0^5 {f\left( x \right)dx} \], biết rằng \[\int\limits_0^3 {f\left( x \right)dx} = 4;\int\limits_1^5 {f\left( x \right)dx = 6;\int\limits_1^3 {f\left( x \right)dx = 3.} } \]
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
về câu hỏi!