Câu hỏi:

28/09/2024 477

Cho điểm A và đường tròn (O; R) sao cho R < OA < 3R.

a) Chứng minh rằng đường tròn (A; 2R) cắt đường tròn (O; R). Gọi B là một trong hai giao điểm của chúng.

b) Gọi C là điểm đối xứng với B qua O. Nối A với C cắt (O) tại D (khác C). Chứng minh rằng AD = DC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho điểm A và đường tròn (O; R) sao cho R < OA < 3R. (ảnh 1)

a)  Theo đề bài, R < OA < 3R nên ta có:

R < OA < 3R

2R – R < OA < 2R + R

Suy ra hai đường tròn (A; 2R) và (O; R) cắt nhau.

b) Vì B nằm trên đường tròn (O; R) mà C đối xứng với B qua O nên BC là một đường kính của đường tròn (O; R).

Khi đó C nằm trên đường tròn (O; R) nên BC = 2R.

Vì B nằm trên đường tròn (A; 2R) nên AB là một bán kính của (A; 2R).

Suy ra AB = 2R.

Vì AB = BC = 2R nên tam giác ABC cân tại B.

Xét tam giác BCD có:

DO là trung tuyến (Do O là trung điểm BC)

DO=R=BC2

Suy ra tam giác BCD vuông tại D, do đó BD CD hay BD AC.

BD AC nên BD là đường cao của tam giác cân ABC, suy ra BD cũng đồng thời là đường trung tuyến của tam giác ABC hay D là trung điểm của AC.

Do đó AD = DC. (đpcm)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho I là trung điểm của đoạn AB. Xét các đường tròn (I; IB) và (A; AB). (ảnh 1)

a) Vì I là trung điểm AB nên ta có AI = AB – IB.

Do đó hai đường tròn (I; IB) và (A; AB) tiếp xúc trong với nhau.

b) Vì D nằm trên đường tròn (A; AB) nên AD = AB, suy ra tam giác ACB cân tại A.

Xét tam giác ACB có:

CI là trung tuyến của tam giác (I là trung điểm AB)

CI=IB=AB2 (CI là bán kính của (I), AB là đường kính của (I))

Suy ra tam giác ACB vuông tại C, do đó AC CB hay AC BD.

Tam giác ABD cân tại A có AC là đường cao nên AC đồng thời là đường trung tuyến của tam giác ABD, suy ra C là trung điểm BD hay CB = CD.

Vậy CB = CD.

Lời giải

a) Do OO' = 4 < 5 = 2 + 3 nên (O) và (O') cắt nhau.

b) Do OO' = 5 = 2 + 3 nên (O) và (O') tiếp xúc với nhau.

c) Do OO' = 6 > 5 = 2 + 3 nên (O) và (O') không giao nhau.