Câu hỏi:
28/09/2024 179Cho điểm A và đường tròn (O; R) sao cho R < OA < 3R.
a) Chứng minh rằng đường tròn (A; 2R) cắt đường tròn (O; R). Gọi B là một trong hai giao điểm của chúng.
b) Gọi C là điểm đối xứng với B qua O. Nối A với C cắt (O) tại D (khác C). Chứng minh rằng AD = DC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Theo đề bài, R < OA < 3R nên ta có:
R < OA < 3R
2R – R < OA < 2R + R
Suy ra hai đường tròn (A; 2R) và (O; R) cắt nhau.
b) Vì B nằm trên đường tròn (O; R) mà C đối xứng với B qua O nên BC là một đường kính của đường tròn (O; R).
Khi đó C nằm trên đường tròn (O; R) nên BC = 2R.
Vì B nằm trên đường tròn (A; 2R) nên AB là một bán kính của (A; 2R).
Suy ra AB = 2R.
Vì AB = BC = 2R nên tam giác ABC cân tại B.
Xét tam giác BCD có:
DO là trung tuyến (Do O là trung điểm BC)
Suy ra tam giác BCD vuông tại D, do đó BD ⊥ CD hay BD ⊥ AC.
BD ⊥ AC nên BD là đường cao của tam giác cân ABC, suy ra BD cũng đồng thời là đường trung tuyến của tam giác ABC hay D là trung điểm của AC.
Do đó AD = DC. (đpcm)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC.
a) Chứng minh rằng hai đường tròn (B; BA) và (C; CA) cắt nhau. Gọi A' là giao điểm khác A của hai đường tròn đó.
b) Chứng minh rằng A và A' đối xứng nhau qua BC.
c) Biết rằng AA' = 24 cm, AB = 15 cm và AC = 13 cm. Tính độ dài BC.
Câu 2:
Cho I là trung điểm của đoạn AB. Xét các đường tròn (I; IB) và (A; AB).
a) Hai đường tròn (I) và (A) nói trên có vị trí tương đối như thế nào?
b) Đường thẳng đi qua B, cắt các đường tròn (I) và (A) làn lượt tại C và D. Hãy so sánh các độ dài BC và CD.
Câu 3:
Hai đường tròn (O; 2 cm) và (O'; 3 cm) có vị trí tương đối như thế nào trong mỗi trường hợp sau:
a) OO' = 4 cm?
b) OO' = 5 cm?
c) OO' = 6 cm?
Câu 4:
Vẽ hình và chứng minh phần b của Ví dụ 2.
Cho đường tròn (O) và dây AB không là đường kính của (O). Vị trí tương đối của (O) và (O'; O'C) sẽ như thế nào nếu O' thẳng hàng với O và A, nhưng nằm ngoài đoạn OA?
về câu hỏi!