Câu hỏi:

28/09/2024 826

Cho I là trung điểm của đoạn AB. Xét các đường tròn (I; IB) và (A; AB).

a) Hai đường tròn (I) và (A) nói trên có vị trí tương đối như thế nào?

b) Đường thẳng đi qua B, cắt các đường tròn (I) và (A) làn lượt tại C và D. Hãy so sánh các độ dài BC và CD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho I là trung điểm của đoạn AB. Xét các đường tròn (I; IB) và (A; AB). (ảnh 1)

a) Vì I là trung điểm AB nên ta có AI = AB – IB.

Do đó hai đường tròn (I; IB) và (A; AB) tiếp xúc trong với nhau.

b) Vì D nằm trên đường tròn (A; AB) nên AD = AB, suy ra tam giác ACB cân tại A.

Xét tam giác ACB có:

CI là trung tuyến của tam giác (I là trung điểm AB)

CI=IB=AB2 (CI là bán kính của (I), AB là đường kính của (I))

Suy ra tam giác ACB vuông tại C, do đó AC CB hay AC BD.

Tam giác ABD cân tại A có AC là đường cao nên AC đồng thời là đường trung tuyến của tam giác ABD, suy ra C là trung điểm BD hay CB = CD.

Vậy CB = CD.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hai đường tròn (O; 2 cm) và (O'; 3 cm) có vị trí tương đối như thế nào trong mỗi trường hợp sau:

a) OO' = 4 cm?     

b) OO' = 5 cm?     

c) OO' = 6 cm?

Xem đáp án » 28/09/2024 759

Câu 2:

Cho tam giác ABC.

a) Chứng minh rằng hai đường tròn (B; BA) và (C; CA) cắt nhau. Gọi A' là giao điểm khác A của hai đường tròn đó.

b) Chứng minh rằng A và A' đối xứng nhau qua BC.

c) Biết rằng AA' = 24 cm, AB = 15 cm và AC = 13 cm. Tính độ dài BC.

Xem đáp án » 28/09/2024 663

Câu 3:

Cho điểm A và đường tròn (O; R) sao cho R < OA < 3R.

a) Chứng minh rằng đường tròn (A; 2R) cắt đường tròn (O; R). Gọi B là một trong hai giao điểm của chúng.

b) Gọi C là điểm đối xứng với B qua O. Nối A với C cắt (O) tại D (khác C). Chứng minh rằng AD = DC.

Xem đáp án » 28/09/2024 470

Câu 4:

Vẽ hình và chứng minh phần b của Ví dụ 2.

Cho đường tròn (O) và dây AB không là đường kính của (O). Vị trí tương đối của (O) và (O'; O'C) sẽ như thế nào nếu O' thẳng hàng với O và A, nhưng nằm ngoài đoạn OA?

Xem đáp án » 28/09/2024 235
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay