Câu hỏi:
13/10/2024 1,230II. Thông hiểu
Cho hàm số y = f(x) = ax3 + bx2 + cx + d có bảng biến thiên sau:

Đồ thị nào trong các phương án A, B, C, D thể hiện hàm số y = f(x)?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Dựa vào bảng biến thiên, ta thấy:
+) Khi x → +∞ thì y → +∞. Loại C và D.
+) Tọa độ các điểm cực trị là (−1; 2) và (1; −2) nên đáp án A là phù hợp.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Dựa vào dạng đồ thị ta có a < 0, d < 0.
Hàm số có hai điểm cực trị trái dấu nên a, c trái dấu suy ra c > 0.
Đồ thị hàm số có tâm đối xứng có hoành độ dương nên \( - \frac{b}{a} > 0 \Rightarrow b > 0\).
Lời giải
Đáp án đúng là: D
Dựa vào đồ thị, ta có tiệm cận đứng \(x = 1\), tiệm cận ngang \(y = 2\)và đồ thị đi qua điểm \(\left( {0;1} \right)\) (1).
Đồ thị hàm số \(y = \,\frac{{a\,x - 1}}{{x + b}}\) có tiệm cận đứng \(x = - b\), tiệm cận ngang \(y = a\)và đi qua điểm \(\left( {0;\frac{{ - 1}}{c}} \right)\) (2).
Từ (1) và (2) suy ra: \(a = 2,\,\,b = 1,\,c = - 1;\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.