Câu hỏi:

16/10/2024 137 Lưu

Tìm tọa độ giao điểm hai đường tiệm cận của đồ thị hàm số \[y = \frac{{3 - x}}{{2x + 5}}\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Tiệm cận ngang: \[y = - \frac{1}{2}\], vì \[\mathop {\lim }\limits_{x \to - \infty } y = - \frac{1}{2};\,\mathop {\lim }\limits_{x \to + \infty } y = - \frac{1}{2}\].

Tiệm cận đứng: \[x = - \frac{5}{2}\], vì \[\mathop {\lim }\limits_{x \to {{\left( { - \frac{5}{2}} \right)}^ - }} y = - \infty ;\,\mathop {\lim }\limits_{x \to {{\left( { - \frac{5}{2}} \right)}^ + }} y = + \infty \].

Vậy tọa độ giao điểm hai đường tiệm cận là \(\left( { - \frac{5}{2};\, - \frac{1}{2}} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Từ đồ thị hàm số ta thấy: hàm số đã cho có một đường tiệm cận đứng và một tiệm cận xiên.

Lời giải

Đáp án đúng là: D

Vì \(\mathop {\lim }\limits_{x \to - \infty } y = 2\) nên \(y = 2\) là đường tiệm cận ngang.

Vì \(\mathop {\lim }\limits_{x \to {0^ + }} y = - \infty ;\mathop {\lim }\limits_{x \to {0^ - }} y = - \infty \)nên \(x = 0\) là đường tiệm cận đứng.

Vậy hàm số đã cho có hai đường tiệm cận.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP