Câu hỏi:
16/10/2024 82Tiệm cận đứng của đồ thị hàm số \(y = \frac{x}{{{x^2} - 4x}}\) là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
\(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \frac{x}{{x\left( {x - 4} \right)}} = - \frac{1}{4}\); \(\mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} \frac{x}{{x\left( {x - 4} \right)}} = - \frac{1}{4}\).
Do đó x = 0 không là tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to {4^ + }} y = \mathop {\lim }\limits_{x \to {4^ + }} \frac{x}{{x\left( {x - 4} \right)}} = + \infty \); \(\mathop {\lim }\limits_{x \to {4^ - }} y = \mathop {\lim }\limits_{x \to {4^ - }} \frac{x}{{x\left( {x - 4} \right)}} = - \infty \).
Do đó x = 4 là tiệm cận đứng của đồ thị hàm số.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = f(x) có đồ thị như hình vẽ dưới đây. Phương trình đường tiệm cận xiên của đồ thị hàm số là
Câu 2:
Cho hàm số y = f(x) có đồ thị như hình vẽ
Đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?
Câu 3:
I. Nhận biết
Cho hàm số y = f(x) có đồ thị như hình vẽ
Đồ thị hàm số đã cho có tiệm cận đứng bằng
Câu 4:
Đường tiệm cận xiên của đồ thị hàm số \(y = 2x - 1 + \frac{3}{{x + 1}}\) là
Câu 5:
Đường tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 2x + 3}}{{x + 1}}\) là
Câu 6:
Cho hàm số y = f(x) có bảng biến thiên như sau:
Số các đường tiệm cận (tiệm cận đứng và tiệm cận ngang) của đồ thị hàm số đã cho bằng
Câu 7:
Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau
Tổng số đường tiệm cận của đồ thị hàm số \[y = f\left( x \right)\]là
về câu hỏi!