Câu hỏi:
21/10/2024 51Trong Vật lí, ta có định luật Joule – Lenz để tính nhiệt lượng toả ra ở dây dẫn khi có dòng điện chạy qua:
\[Q = {I^2}Rt\].
Trong đó: \[Q\] là nhiệt lượng toả ra trên dây dẫn tính theo Jun (J);
\[I\] là cường độ dòng điện chạy trong dây dẫn tính theo Ampe (A);
\[R\] là điện trở dây dẫn tính theo Ohm (Ω);
\[t\] là thời gian dòng điện chạy qua dây dẫn tính theo giây.
Một bếp điện khi hoạt động bình thường có điện trở \[R = 80\,\,\Omega .\] Biết nhiệt lượng mà dây dẫn toả ra trong 1 giây là 500 J, Cường độ dòng điện chạy trong dây dẫn là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Theo bài, ta có \[R = 80\,\,\Omega ,\] \[t = 1\] (s), \[Q = 500\] (J).
Áp dụng công thức \[Q = {I^2}Rt\], ta có: \[500 = {I^2} \cdot 80 \cdot 1\]
Suy ra \(80{I^2} = 500\), nên \[{I^2} = \frac{{500}}{{80}} = \frac{{25}}{4}\].
Do đó \[I = \sqrt {\frac{{25}}{4}} = \frac{{\sqrt {25} }}{{\sqrt 4 }} = \frac{5}{2} = 2,5\] (A).
Vậy cường độ dòng điện chạy trong dây dẫn là \[2,5\] Ampe.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
II. Thông hiểu
Giá trị của biểu thức \(\left( {\sqrt {\frac{2}{3}} + \sqrt {\frac{{50}}{3}} - \sqrt {24} } \right) \cdot \sqrt 6 \) là
Câu 3:
Giá trị của biểu thức \[\left( {1 + \sqrt {\frac{3}{5}} } \right)\left( {1 - \sqrt {\frac{3}{5}} } \right)\] là \(\frac{a}{b}\). Khi đó tích \(ab\) bằng
Câu 4:
Giá trị biểu thức \(\frac{{\sqrt {10} - \sqrt {15} }}{{\sqrt 8 - \sqrt {12} }}\) là
Câu 5:
Rút gọn biểu thức \(\sqrt {12\left( {x + 2} \right)} \cdot \sqrt {\frac{1}{{6\left( {{x^2} - 4} \right)}}} \) ta được
Câu 6:
Với \(a < 0\,,\,\,b > 0\), biểu thức \[ - \frac{1}{3}a{b^3} \cdot \sqrt {\frac{{9{a^2}}}{{{b^6}}}} \] có giá trị là</>
về câu hỏi!