Giải bất phương trình \({\log _2}\left( {3x - 2} \right) > {\log _2}\left( {6 - 5x} \right)\) được tập nghiệm là \(\left( {a;b} \right)\). Hãy tính tổng \(S = a + b\).
Quảng cáo
Trả lời:

Điều kiện \(\left\{ \begin{array}{l}3x - 2 > 0\\6 - 5x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > \frac{2}{3}\\x < \frac{6}{5}\end{array} \right. \Leftrightarrow \frac{2}{3} < x < \frac{6}{5}.\)
Ta có: \({\log _2}\left( {3x - 2} \right) > {\log _2}\left( {6 - 5x} \right)\)\( \Leftrightarrow 3x - 2 > 6 - 5x \Leftrightarrow 8x > 8 \Leftrightarrow x > 1.\)
Kết hợp với điều kiện, ta được \(1 < x < \frac{6}{5}.\)
Vậy, tập nghiệm của bất phương trình là \(\left( {1;\frac{6}{5}} \right).\) Từ đó, \(S = a + b = 1 + \frac{6}{5} = \frac{{11}}{5}.\)
Lời giải ngắn gọn như sau:
\({\log _2}\left( {3x - 2} \right) > {\log _2}\left( {6 - 5x} \right) \Leftrightarrow \left\{ \begin{array}{l}3x - 2 > 6 - 5x\\6 - 5x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 1\\x < \frac{6}{5}\end{array} \right. \Leftrightarrow 1 < x < \frac{6}{5}.\) Chọn B.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có .
Vật ở xa vị trí cân bằng nhất nghĩa là .
Khi đó, . Vậy trong 10 giây đầu tiên thì vật ở xa vị trí cân bằng nhất tại các thời điểm (giây).
Khi vật ở vị trí cân bằng thì
.
Vậy trong khoảng từ 0 đến 20 giây thì vật ở vị trí cân bằng tại các thời điểm (giây); tức là có 5 lần vật qua vị trí cân bằng.
Đáp án: a) Đúng, b) Sai, c) Đúng, d) Sai.
Lời giải
Ta có .
Đáp án: a) Sai, b) Sai, c) Đúng, d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.