Câu hỏi:

19/08/2025 3,621 Lưu

Cho phương trình \(2\sin \left( {x - \frac{\pi }{{12}}} \right) + \sqrt 3 = 0\).

a) Phương trình đã cho tương đương với phương trình \(\sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \left( {\frac{\pi }{3}} \right)\).

b) Phương trình đã cho có nghiệm là: \(x = \frac{\pi }{4} + k2\pi ;\,\,x = \frac{{7\pi }}{{12}} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\).

c) Phương trình đã cho có nghiệm âm lớn nhất bằng \( - \frac{\pi }{4}\).

d) Số nghiệm của phương trình đã cho trong khoảng \(\left( { - \pi ;\pi } \right)\) là hai nghiệm.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \(2\sin \left( {x - \frac{\pi }{{12}}} \right) + \sqrt 3 = 0 \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) = - \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \left( { - \frac{\pi }{3}} \right)\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x - \frac{\pi }{{12}} = - \frac{\pi }{3} + k2\pi }\\{x - \frac{\pi }{{12}} = \pi - \left( { - \frac{\pi }{3}} \right) + k2\pi }\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - \frac{\pi }{4} + k2\pi }\\{x = \frac{{17\pi }}{{12}} + k2\pi }\end{array}\left( {k \in \mathbb{Z}} \right)} \right.} \right.\).

Vậy phương trình có nghiệm là: \[x = - \frac{\pi }{4} + k2\pi ;\,\,x = \frac{{17\pi }}{{12}} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\].

Phương trình có nghiệm âm lớn nhất bằng \( - \frac{\pi }{4}\).

Số nghiệm của phương trình trong khoảng \(\left( { - \pi ;\pi } \right)\) là hai nghiệm.

Đáp án:       a) Sai,                    b) Sai,                   c) Đúng,      d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có h=x=1,5costπ41,5 .

Vật ở xa vị trí cân bằng nhất nghĩa là .

Khi đó, costπ4=±1tπ4=k2πtπ4=π+k2πt=8kt=4+8kk . Vậy trong 10 giây đầu tiên thì vật ở xa vị trí cân bằng nhất tại các thời điểm t=0,t=4,t=8  (giây).

Khi vật ở vị trí cân bằng thì x=01,5costπ4=0costπ4=0

tπ4=π2+kπt=2+4k  k

.

Vậy trong khoảng từ 0 đến 20 giây thì vật ở vị trí cân bằng tại các thời điểm t=2,t=6,t=10,t=14,t=18  (giây); tức là có 5 lần vật qua vị trí cân bằng.

Đáp án:       a) Đúng,      b) Sai,                   c) Đúng,      d) Sai.

Lời giải

Ta có cot3x=13cot3x=cotπ33x=π3+kπx=π9+kπ3  k.

π2<π9+kπ3<0  k76<k<13k=1;0x=π9x=4π9.

Đáp án:       a) Sai,                    b) Sai,                   c) Đúng,      d) Đúng.