Câu hỏi:

26/12/2024 67

Tập nghiệm \(S\) của bất phương trình \({\log _5}x > 2\)

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều kiện: x > 0.

Bất phương trình tương đương với x>52x>25 . Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai đồ thị hàm số \(y = \sin \left( {x + \frac{\pi }{4}} \right)\)\(y = \sin x\).

a) Phương trình hoành độ giao điểm của hai đồ thị hàm số: \(\sin \left( {x + \frac{\pi }{4}} \right) = \sin x\).

b) Hoành độ giao điểm của hai đồ thị là \(x = \frac{{3\pi }}{8} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

c) Khi \[x \in \left[ {0;2\pi } \right]\] thì hai đồ thị hàm số cắt nhau tại ba điểm.

d) Khi \(x \in \left[ {0;2\pi } \right]\) thì toạ độ giao điểm của hai đồ thị hàm số là: \(\left( {\frac{{5\pi }}{8};\sin \frac{{5\pi }}{8}} \right),\left( {\frac{{7\pi }}{8};\sin \frac{{7\pi }}{8}} \right)\).

Xem đáp án » 26/12/2024 765

Câu 2:

Một vật dao động xung quanh vị trí cân bằng theo phương trình \(x = 1,5\cos \left( {\frac{{t\pi }}{4}} \right)\); trong đó \(t\) là thời gian được tính bằng giây và quãng đường \(h = \left| x \right|\) được tính bằng mét là khoảng cách theo phương ngang của chất điểm đối với vị trí cân bằng (xem hình bên).
Một vật dao động xung quanh vị trí cân bằng theo phương trình (ảnh 1)

a) Vật ở xa vị trí cân bằng nhất nghĩa là \(h = 1,5\;\,{\rm{m}}\).

b) Trong 10 giây đầu tiên, có hai thời điểm vật ở xa vị trí cân bằng nhất.

c) Khi vật ở vị trí cân bằng thì \(\cos \left( {\frac{{t\pi }}{4}} \right) = 0\).

d) Trong khoảng từ 0 đến 20 giây thì vật đi qua vị trí cân bằng 4 lần.

Xem đáp án » 26/12/2024 649

Câu 3:

Phương trình \[\sin x = \frac{{\sqrt 3 }}{2}\] có nghiệm là:

Xem đáp án » 26/12/2024 382

Câu 4:

Cho phương trình lượng giác \(\cot 3x = - \frac{1}{{\sqrt 3 }}\) (*).

a) Phương trình (*) tương đương \(\cot 3x = \cot \left( {\frac{{ - \pi }}{6}} \right)\).

b) Phương trình (*) có nghiệm \(x = \frac{\pi }{9} + k\frac{\pi }{3}\,\,\left( {k \in \mathbb{Z}} \right)\).

c) Tổng các nghiệm của phương trình trong khoảng \(\left( { - \frac{\pi }{2};0} \right)\) bằng \(\frac{{ - 5\pi }}{9}\).

d) Phương trình có nghiệm dương nhỏ nhất bằng \(\frac{{2\pi }}{9}\).

Xem đáp án » 26/12/2024 319

Câu 5:

Cho phương trình \({\sin ^2}\left( {2x + \frac{\pi }{4}} \right) = {\cos ^2}\left( {x + \frac{\pi }{2}} \right)\).

a) Hạ bậc hai vế, ta được phương trình \(\frac{{1 + \cos \left( {4x + \frac{\pi }{2}} \right)}}{2} = \frac{{1 - \cos \left( {2x + \pi } \right)}}{2}\).

b) Ta có \(\cos \left( {2x + \pi } \right) = - \cos 2x\).

c) Phương trình đã cho đưa về dạng \(\cos \left( {4x + \frac{\pi }{2}} \right) = \cos 2x\).

d) Nghiệm của phương trình đã cho là \(x = - \frac{\pi }{4} + k\pi \)\(x = & \frac{\pi }{{12}} + k\frac{\pi }{3}\,\,\left( {k \in \mathbb{Z}} \right)\).

Xem đáp án » 26/12/2024 205

Câu 6:

Một cây cầu có dạng cung \(AB\) của đồ thị hàm số \(y = 4,8\cos \frac{x}{9}\) và được mô tả trong hệ trục toạ độ với đơn vị trục là mét như ở nh vẽ dưới đây.

Một cây cầu có dạng cung \(AB\) của đồ thị hàm số \(y = 4,8\cos \frac{x}{9}\) và được mô tả trong hệ trục (ảnh 1)

Một sà lan chở khối hàng hoá được xếp thành hình hộp chữ nhật với độ cao \(3,6\,{\rm{m}}\) so với mực nước sông. Hỏi chiều rộng của khối hàng hoá đó lớn nhất là bao nhiêu mét đ sà lan có thể đi qua được gầm cầu (làm tròn kết quả đến hàng đơn vị)?

Xem đáp án » 26/12/2024 194

Câu 7:

Phương trình \(\tan \left( {3x - 15^\circ } \right) = \sqrt 3 \) có các nghiệm là

Xem đáp án » 26/12/2024 144

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store