Câu hỏi:

26/12/2024 703 Lưu

Số nghiệm nguyên của bất phương trình \[{\log _{\frac{\pi }{4}}}\left( {3x + 1} \right) \ge {\log _{\frac{\pi }{4}}}\left( {2x + 5} \right)\]

A. \(5\).                  
B. \(4\).                  
C. \(6\).                   
D. vô số.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Do π4<1  nên  logπ43x+1logπ42x+5

  x>13x4 13<x4. Do đó các nghiệm nguyên là:0;1;2;3;4 .

Vậy bất phương trình có 5 nghiệm nguyên. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có h=x=1,5costπ41,5 .

Vật ở xa vị trí cân bằng nhất nghĩa là .

Khi đó, costπ4=±1tπ4=k2πtπ4=π+k2πt=8kt=4+8kk . Vậy trong 10 giây đầu tiên thì vật ở xa vị trí cân bằng nhất tại các thời điểm t=0,t=4,t=8  (giây).

Khi vật ở vị trí cân bằng thì x=01,5costπ4=0costπ4=0

tπ4=π2+kπt=2+4k  k

.

Vậy trong khoảng từ 0 đến 20 giây thì vật ở vị trí cân bằng tại các thời điểm t=2,t=6,t=10,t=14,t=18  (giây); tức là có 5 lần vật qua vị trí cân bằng.

Đáp án:       a) Đúng,      b) Sai,                   c) Đúng,      d) Sai.

Lời giải

Ta có cot3x=13cot3x=cotπ33x=π3+kπx=π9+kπ3  k.

π2<π9+kπ3<0  k76<k<13k=1;0x=π9x=4π9.

Đáp án:       a) Sai,                    b) Sai,                   c) Đúng,      d) Đúng.