Câu hỏi:

19/08/2025 511 Lưu

Cho phương trình \(\sin \left( {2x - \frac{\pi }{4}} \right) = \sin \left( {x + \frac{{3\pi }}{4}} \right)\) (*).

a) Phương trình có nghiệm: \(x = \pi + k2\pi \)\(x = \frac{\pi }{6} + k\frac{{2\pi }}{3}\,\,\left( {k \in \mathbb{Z}} \right)\).

b) Trong khoảng \(\left( {0;\pi } \right)\), phương trình có 2 nghiệm.

c) Tổng các nghiệm của phương trình trong khoảng \(\left( {0;\pi } \right)\) bằng \(\frac{{7\pi }}{6}\).

d) Trong khoảng \(\left( {0;\pi } \right)\), phương trình có nghiệm lớn nhất bằng \(\frac{{5\pi }}{6}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Có sin2xπ4=sinx+3π42xπ4=x+3π4+k2π2xπ4=π4x+k2πx=π+k2πx=π6+k2π3k

 Vì x0;π nên  xπ6;5π6 . Ta có π6+5π6=π .

Đáp án:       a) Đúng,      b) Đúng,     c) Sai,                    d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có h=x=1,5costπ41,5 .

Vật ở xa vị trí cân bằng nhất nghĩa là .

Khi đó, costπ4=±1tπ4=k2πtπ4=π+k2πt=8kt=4+8kk . Vậy trong 10 giây đầu tiên thì vật ở xa vị trí cân bằng nhất tại các thời điểm t=0,t=4,t=8  (giây).

Khi vật ở vị trí cân bằng thì x=01,5costπ4=0costπ4=0

tπ4=π2+kπt=2+4k  k

.

Vậy trong khoảng từ 0 đến 20 giây thì vật ở vị trí cân bằng tại các thời điểm t=2,t=6,t=10,t=14,t=18  (giây); tức là có 5 lần vật qua vị trí cân bằng.

Đáp án:       a) Đúng,      b) Sai,                   c) Đúng,      d) Sai.

Lời giải

Ta có cot3x=13cot3x=cotπ33x=π3+kπx=π9+kπ3  k.

π2<π9+kπ3<0  k76<k<13k=1;0x=π9x=4π9.

Đáp án:       a) Sai,                    b) Sai,                   c) Đúng,      d) Đúng.