Câu hỏi:
23/01/2025 348
Tính tổng các nghiệm của phương trình \(\left( {\sqrt {x - 4} - 1} \right)\left( {{x^2} - 7x + 6} \right) = 0\).
Tính tổng các nghiệm của phương trình \(\left( {\sqrt {x - 4} - 1} \right)\left( {{x^2} - 7x + 6} \right) = 0\).
Quảng cáo
Trả lời:
Trả lời: 11
Điều kiện \(x \ge 4\).
Ta có \(\left( {\sqrt {x - 4} - 1} \right)\left( {{x^2} - 7x + 6} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}\sqrt {x - 4} = 1\;\left( 1 \right)\\{x^2} - 7x + 6 = 0\;\left( 2 \right)\end{array} \right.\).
+) Bình phương hai vế của phương trình (1) ta được \(x - 4 = 1\)\( \Leftrightarrow x = 5\).
Thay \(x = 5\) vào phương trình (1) ta thấy thỏa mãn.
+) Giải (2).
Ta có \({x^2} - 7x + 6 = 0\)\( \Leftrightarrow x = 6\) hoặc \(x = 1\).
Kết hợp với điều kiện ta có tập nghiệm của phương trình là \(S = \left\{ {5;6} \right\}\).
Suy ra tổng các nghiệm của phương trình là 11.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) S, b) Đ, c) Đ, d) S
a) Ta có \(d\left( {I,\Delta } \right) = \frac{{\left| { - 1 - 2.2 + 7} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2}} }} = \frac{2}{{\sqrt 5 }}\).
b) Đường kính của đường tròn bằng \(2d\left( {I,\Delta } \right) = \frac{4}{{\sqrt 5 }}\).
c) Phương trình của đường tròn là \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = \frac{4}{5}\).
d) Xét hệ \(\left\{ \begin{array}{l}{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = \frac{4}{5}\\x - 2y + 7 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = \frac{4}{5}\\x = 2y - 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{\left( {2y - 6} \right)^2} + {\left( {y - 2} \right)^2} = \frac{4}{5}\\x = 2y - 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}5{y^2} - 28y + \frac{{196}}{5} = 0\\x = 2y - 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}y = \frac{{14}}{5}\\x = - \frac{7}{5}\end{array} \right.\).
Vậy đường tròn \(\left( C \right)\) tiếp xúc với đường thẳng \(\Delta \) tại điểm có hoành độ nhỏ hơn 0.
Lời giải
Trả lời: 11,2
Vật thể \(M\) chuyển động trên một đường thẳng. Đường thẳng đó đi qua \(A\left( {5;3} \right)\) và nhận \(\overrightarrow v \left( {1;2} \right)\) làm vectơ chỉ phương có dạng \(\left\{ \begin{array}{l}x = 5 + t\\y = 3 + 2t\end{array} \right.\).
Khi vật thể \(M\) chuyển động được 5 giây thì vật ở vị trí \(B\) có tọa độ là \(\left\{ \begin{array}{l}x = 5 + 5 = 10\\y = 3 + 2.5 = 13\end{array} \right.\).
Quãng đường vật thể \(M\) đi được là \(AB = \sqrt {{{\left( {10 - 5} \right)}^2} + {{\left( {13 - 3} \right)}^2}} = 5\sqrt 5 \approx 11,2\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.