Tìm tập nghiệm của bất phương trình\[{\rm{ta}}{{\rm{n}}^{\rm{2}}}\left( {\frac{{\rm{\pi }}}{{\rm{2}}} - {\rm{x}}} \right){\rm{ = }}\frac{{{\rm{1 + sinx}}}}{{{\rm{sinx}}}}\]
A. \[\left\{ {\frac{{\rm{\pi }}}{{\rm{6}}}{\rm{ + }}\frac{{{\rm{k2\pi }}}}{{\rm{3}}}{\rm{;}} - \frac{{\rm{\pi }}}{{\rm{2}}}{\rm{ + k2\pi ,}}\,\,{\rm{k}} \in \mathbb{Z}} \right\}\]
B. \[\left\{ { - \frac{{\rm{\pi }}}{{\rm{2}}}{\rm{ + k2\pi ,}}\,\,{\rm{k}} \in \mathbb{Z}} \right\}\]
C. \[\left\{ {\frac{{\rm{\pi }}}{{\rm{6}}}{\rm{ + }}\frac{{{\rm{k2\pi }}}}{{\rm{3}}}{\rm{, }}\,{\rm{k}} \in \mathbb{Z}} \right\}\]
D. \[\left\{ {\frac{{\rm{\pi }}}{{\rm{6}}}{\rm{ + k\pi , }}\,{\rm{k}} \in \mathbb{Z}} \right\}\]
Quảng cáo
Trả lời:

Điều kiện :\[{\rm{sinx}} \ne 0 \Leftrightarrow {\rm{x}} \ne {\rm{k\pi ,}}\,\,{\rm{k}} \in \mathbb{Z}\]
\[{\rm{ta}}{{\rm{n}}^{\rm{2}}}\left( {\frac{{\rm{\pi }}}{{\rm{2}}} - {\rm{x}}} \right){\rm{ = }}\frac{{{\rm{1 + sinx}}}}{{{\rm{sinx}}}} \Leftrightarrow {\rm{co}}{{\rm{t}}^{\rm{2}}}{\rm{x = }}\frac{{{\rm{1 + sinx}}}}{{{\rm{sinx}}}} \Leftrightarrow \frac{{{\rm{co}}{{\rm{s}}^{\rm{2}}}{\rm{x}}}}{{{\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{x}}}}{\rm{ = }}\frac{{{\rm{1 + sinx}}}}{{{\rm{sinx}}}}\]
\[ \Leftrightarrow {\rm{co}}{{\rm{s}}^{\rm{2}}}{\rm{x = }}\left( {{\rm{1 + sinx}}} \right){\rm{sinx}} \Leftrightarrow {\rm{co}}{{\rm{s}}^{\rm{2}}}{\rm{x}} - {\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{x = sinx}} \Leftrightarrow {\rm{cos2x = sinx}}\]
\( \Leftrightarrow cos2x = cos\left( {\frac{\pi }{2} - x} \right) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x\,\,{\rm{ = }}\frac{\pi }{2} - x + k2\pi }\\{2x\,\,{\rm{ = }}x - \frac{\pi }{2} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x\,\,{\rm{ = }}\frac{\pi }{6} + \frac{{k2\pi }}{3}}\\{x\,\,{\rm{ = }} - \frac{\pi }{2} + k2\pi }\end{array} \Leftrightarrow {\rm{x = }}\frac{{\rm{\pi }}}{{\rm{6}}}{\rm{ + }}\frac{{{\rm{k2\pi }}}}{{\rm{3}}}{\rm{, k}} \in \mathbb{Z}} \right.\)Đáp án cần chọn là: C
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[ - \frac{{35}}{{36}}{\rm{\pi }}\]
B. \[ - \frac{{11}}{{36}}{\rm{\pi }}\]
C. \[ - \frac{{{\rm{11\pi }}}}{{{\rm{12}}}}\]
D. \[ - \frac{{\rm{\pi }}}{{{\rm{12}}}}\]
Lời giải
\[{\mathop{\rm co}\nolimits} {\rm{s}}\left( {{\rm{4x}} - \frac{{\rm{\pi }}}{{\rm{6}}}} \right){\rm{ + si}}{{\rm{n}}^{\rm{2}}}{\rm{x = co}}{{\rm{s}}^{\rm{2}}}{\rm{x}} \Leftrightarrow {\mathop{\rm c}\nolimits} {\rm{os}}\left( {{\rm{4x}} - \frac{{\rm{\pi }}}{{\rm{6}}}} \right){\rm{ = co}}{{\rm{s}}^{\rm{2}}}{\rm{x}} - {\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{x}}\]
\[ \Leftrightarrow {\mathop{\rm c}\nolimits} {\rm{os}}\left( {{\rm{4x}} - \frac{{\rm{\pi }}}{{\rm{6}}}} \right){\rm{ = cos}}2x\]
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{\rm{4x}} - \frac{{\rm{\pi }}}{{\rm{6}}}{\rm{ = }}2x + k2\pi }\\{{\rm{4x}} - \frac{{\rm{\pi }}}{{\rm{6}}}{\rm{ = }} - 2x + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x\,{\rm{ = }}\,\,\frac{\pi }{{12}} + k\pi }\\{x\,{\rm{ = }}\,\,\frac{\pi }{{36}} + k\frac{\pi }{3}}\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\]
Ta có mỗi họ nghiệm lần lượt có các nghiệm âm lớn nhất là: \[{{\rm{x}}_{\rm{1}}}{\rm{ = }}\frac{{\rm{\pi }}}{{{\rm{12}}}} - {\rm{\pi = }} - \frac{{{\rm{11\pi }}}}{{{\rm{12}}}}{\rm{;}}\,\,{{\rm{x}}_{\rm{2}}}{\rm{ = }}\frac{{\rm{\pi }}}{{{\rm{36}}}} - \frac{{\rm{\pi }}}{{\rm{3}}}{\rm{ = }} - \frac{{{\rm{11\pi }}}}{{{\rm{36}}}}\]
Vậy nghiệm âm lớn nhất của phương trình là \[{\rm{x = }} - \frac{{11}}{{36}}{\rm{\pi }}\]
Đáp án cần chọn là: B
Câu 2
A. \(\left[ {\begin{array}{*{20}{c}}{{\rm{x = }}\frac{{\rm{\pi }}}{{{\rm{12}}}}{\rm{ + k2\pi }}}\\{{\rm{x = }}\frac{{{\rm{11\pi }}}}{{{\rm{12}}}}{\rm{ + }}l{\rm{2\pi }}}\end{array}} \right.\left( {k,l \in \mathbb{Z}} \right)\)
B. \(\left[ {\begin{array}{*{20}{c}}{{\rm{x = }}\frac{{\rm{\pi }}}{{{\rm{12}}}}{\rm{ + k2\pi }}}\\{{\rm{x = }} - \frac{{\rm{\pi }}}{{{\rm{12}}}}{\rm{ + k2\pi }}}\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\)
C. \({\rm{x = }}\frac{{\rm{\pi }}}{{{\rm{12}}}}{\rm{ + k2\pi }}\left( {k \in \mathbb{Z}} \right)\)
D. \({\rm{x = }}\frac{{{\rm{11\pi }}}}{{{\rm{12}}}}{\rm{ + k2\pi }}\,\left( {k \in \mathbb{Z}} \right)\)
Lời giải
\[{\rm{cosx = cos}}\frac{{\rm{\pi }}}{{{\rm{12}}}} \Rightarrow \left[ {\begin{array}{*{20}{c}}{{\rm{x = }}\frac{{\rm{\pi }}}{{{\rm{12}}}}{\rm{ + k2\pi }}}\\{{\rm{x = }} - \frac{{\rm{\pi }}}{{{\rm{12}}}}{\rm{ + k2\pi }}}\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\]
Đáp án cần chọn là: B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[{\rm{m}} \ge 1\]
B. \[{\rm{m}} \in \mathbb{R}\bcancel{{}}\left( { - {\rm{1; 1}}} \right)\]
C. \[0 \le {\rm{m}} \le 1\]
D. m < 1
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. 4
B. 5
C. 3
D. 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.