Câu hỏi:

31/01/2025 34

Cho góc lượng giác \(\alpha \)thỏa mãn \[\frac{{{\rm{sin}}\left( {{\rm{2\alpha }}} \right){\rm{ + sin}}\left( {{\rm{5\alpha }}} \right) - {\rm{sin}}\left( {{\rm{3\alpha }}} \right)}}{{{\rm{2co}}{{\rm{s}}^{\rm{2}}}\left( {{\rm{2\alpha }}} \right){\rm{ + cos}}\left( {\rm{\alpha }} \right) - {\rm{1}}}}{\rm{ = }} - {\rm{2}}\]. Tính \(\sin \left( \alpha \right)\).

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[\frac{{{\rm{sin}}\left( {{\rm{2\alpha }}} \right){\rm{ + sin}}\left( {{\rm{5\alpha }}} \right) - {\rm{sin}}\left( {{\rm{3\alpha }}} \right)}}{{{\rm{2co}}{{\rm{s}}^{\rm{2}}}\left( {{\rm{2\alpha }}} \right){\rm{ + cos}}\left( {\rm{\alpha }} \right) - {\rm{1}}}}{\rm{ = }} - {\rm{2}}\]

\[ \Leftrightarrow \frac{{2\sin \left( \alpha \right)\cos \left( \alpha \right) + 2\cos \left( {4\alpha } \right)\sin \left( \alpha \right)}}{{2.\frac{{1 + \cos \left( {4\alpha } \right)}}{2} + \cos \left( \alpha \right) - 1}}{\rm{ = }} - 2\]

\[ \Leftrightarrow \frac{{{\rm{2sin}}\left( {\rm{\alpha }} \right){\rm{cos}}\left( {\rm{\alpha }} \right){\rm{ + 2cos}}\left( {{\rm{4\alpha }}} \right){\rm{sin}}\left( {\rm{\alpha }} \right)}}{{{\rm{cos}}\left( {{\rm{4\alpha }}} \right){\rm{ + cos}}\left( {\rm{\alpha }} \right)}}{\rm{ = }} - 2\]

\[ \Leftrightarrow \frac{{{\rm{2sin}}\left( {\rm{\alpha }} \right)\left[ {{\rm{cos}}\left( {\rm{\alpha }} \right){\rm{ + cos}}\left( {{\rm{4\alpha }}} \right)} \right]}}{{{\rm{cos}}\left( {{\rm{4\alpha }}} \right){\rm{ + cos}}\left( {\rm{\alpha }} \right)}}{\rm{ = }} - 2\]

\[ \Leftrightarrow {\rm{2sin(\alpha ) = }} - 2\]

\[ \Leftrightarrow {\rm{sin(\alpha ) = }} - 1\]

Đáp án cần chọn là: A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có các góc thỏa mãn sin(A) + sin(B) = cos(A) + cos(B) . Tính số đo góc C của tam giác ABC

Xem đáp án » 31/01/2025 94

Câu 2:

Trong các mệnh đề sau, tìm mệnh đề đúng:

Xem đáp án » 31/01/2025 52

Câu 3:

Trong các mệnh đề sau, mệnh đề nào là mệnh đề sai:

Xem đáp án » 31/01/2025 48

Câu 4:

Trong các khẳng định sau, khẳng định nào là đúng ?

Xem đáp án » 31/01/2025 45

Câu 5:

Tính tổng \[{\rm{S = si}}{{\rm{n}}^{\rm{2}}}{{\rm{5}}^{\rm{0}}}{\rm{ + si}}{{\rm{n}}^{\rm{2}}}{\rm{1}}{{\rm{0}}^{\rm{0}}}{\rm{ + si}}{{\rm{n}}^{\rm{2}}}{\rm{1}}{{\rm{5}}^{\rm{0}}}{\rm{ + }}...{\rm{ + si}}{{\rm{n}}^{\rm{2}}}{\rm{8}}{{\rm{5}}^{\rm{0}}}\]

Xem đáp án » 31/01/2025 44

Câu 6:

Nếu \[{\rm{tan}}\left( {\rm{\alpha }} \right)\] và \[{\rm{tan}}\left( {\rm{\beta }} \right)\] là nghiệm của phương trình \[{{\rm{x}}^{\rm{2}}} - {\rm{px + q = 0, (q}} \ne 1)\] thì giá trị của biểu thức \[{\rm{Q = co}}{{\rm{s}}^{\rm{2}}}\left( {{\rm{\alpha + \beta }}} \right){\rm{ + psin}}\left( {{\rm{\alpha + \beta }}} \right){\rm{cos}}\left( {{\rm{\alpha + \beta }}} \right){\rm{ + qsi}}{{\rm{n}}^{\rm{2}}}\left( {{\rm{\alpha + \beta }}} \right)\] bằng

Xem đáp án » 31/01/2025 43

Câu 7:

Chọn đẳng thức sai trong các đẳng thức sau:

Xem đáp án » 31/01/2025 41
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua