Câu hỏi:
10/02/2025 152
Tính tổng các nghiệm của phương trình \(\left( {\sqrt {x - 4} - 1} \right)\left( {{x^2} - 7x + 6} \right) = 0\).
Tính tổng các nghiệm của phương trình \(\left( {\sqrt {x - 4} - 1} \right)\left( {{x^2} - 7x + 6} \right) = 0\).
Quảng cáo
Trả lời:
Trả lời: 11
Điều kiện \(x \ge 4\).
Ta có \(\left( {\sqrt {x - 4} - 1} \right)\left( {{x^2} - 7x + 6} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}\sqrt {x - 4} = 1\;\left( 1 \right)\\{x^2} - 7x + 6 = 0\;\left( 2 \right)\end{array} \right.\).
+) Bình phương hai vế của phương trình (1) ta được \(x - 4 = 1\)\( \Leftrightarrow x = 5\).
Thay \(x = 5\) vào phương trình (1) ta thấy thỏa mãn.
+) Giải (2).
Ta có \({x^2} - 7x + 6 = 0\)\( \Leftrightarrow x = 6\) hoặc \(x = 1\).
Kết hợp với điều kiện ta có tập nghiệm của phương trình là \(S = \left\{ {5;6} \right\}\).
Suy ra tổng các nghiệm của phương trình là 11.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 11,2
Vật thể \(M\) chuyển động trên một đường thẳng. Đường thẳng đó đi qua \(A\left( {5;3} \right)\) và nhận \(\overrightarrow v \left( {1;2} \right)\) làm vectơ chỉ phương có dạng \(\left\{ \begin{array}{l}x = 5 + t\\y = 3 + 2t\end{array} \right.\).
Khi vật thể \(M\) chuyển động được 5 giây thì vật ở vị trí \(B\) có tọa độ là \(\left\{ \begin{array}{l}x = 5 + 5 = 10\\y = 3 + 2.5 = 13\end{array} \right.\).
Quãng đường vật thể \(M\) đi được là \(AB = \sqrt {{{\left( {10 - 5} \right)}^2} + {{\left( {13 - 3} \right)}^2}} = 5\sqrt 5 \approx 11,2\).
Lời giải

Đường tròn \(\left( C \right)\) có tâm \(I\left( { - 1; - 2} \right)\) và \(R = 4\).
Vì \(M\) nằm trên đường tròn nên \(IM = 4\).
Gọi \(H\) là trung điểm của \(IM\) \( \Rightarrow IH = \frac{1}{2}IM = 2\).
Tam giác \(AIM\) cân tại \(A\) nên \(AH \bot IM\). Suy ra \({S_{IAM}} = \frac{1}{2}AH.IM \Rightarrow IH = \frac{{4.2}}{4} = 2\).
Do đó ta có \(I{A^2} = I{H^2} + A{H^2} = {2^2} + {2^2} = 8 \Rightarrow IA = 2\sqrt 2 \).
Ta thấy điểm \(A\) cách điểm \(I\) một khoảng không đổi nên quỹ tích điểm \(A\) là đường tròn tâm \(I\) bán kính \(2\sqrt 2 \).
Do đó điểm \(A\) di chuyển trên đường tròn có phương trình là \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} = 8\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.