Câu hỏi:

10/02/2025 152

Tính tổng các nghiệm của phương trình \(\left( {\sqrt {x - 4} - 1} \right)\left( {{x^2} - 7x + 6} \right) = 0\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trả lời: 11

Điều kiện \(x \ge 4\).

Ta có \(\left( {\sqrt {x - 4} - 1} \right)\left( {{x^2} - 7x + 6} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}\sqrt {x - 4} = 1\;\left( 1 \right)\\{x^2} - 7x + 6 = 0\;\left( 2 \right)\end{array} \right.\).

+) Bình phương hai vế của phương trình (1) ta được \(x - 4 = 1\)\( \Leftrightarrow x = 5\).

Thay \(x = 5\) vào phương trình (1) ta thấy thỏa mãn.

+) Giải (2).

Ta có \({x^2} - 7x + 6 = 0\)\( \Leftrightarrow x = 6\) hoặc \(x = 1\).

Kết hợp với điều kiện ta có tập nghiệm của phương trình là \(S = \left\{ {5;6} \right\}\).

Suy ra tổng các nghiệm của phương trình là 11.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 11,2

Vật thể \(M\) chuyển động trên một đường thẳng. Đường thẳng đó đi qua \(A\left( {5;3} \right)\) và nhận \(\overrightarrow v \left( {1;2} \right)\) làm vectơ chỉ phương có dạng \(\left\{ \begin{array}{l}x = 5 + t\\y = 3 + 2t\end{array} \right.\).

Khi vật thể \(M\) chuyển động được 5 giây thì vật ở vị trí \(B\) có tọa độ là \(\left\{ \begin{array}{l}x = 5 + 5 = 10\\y = 3 + 2.5 = 13\end{array} \right.\).

Quãng đường vật thể \(M\) đi được là \(AB = \sqrt {{{\left( {10 - 5} \right)}^2} + {{\left( {13 - 3} \right)}^2}} = 5\sqrt 5 \approx 11,2\).

Lời giải

Một bánh xe đạp hình tròn khi gắn trên hệ trục tọa độ \(Oxy\) có phương trình \(\left( C \right):{\left (ảnh 1)

Đường tròn \(\left( C \right)\) có tâm \(I\left( { - 1; - 2} \right)\)\(R = 4\).

\(M\) nằm trên đường tròn nên \(IM = 4\).

Gọi \(H\) là trung điểm của \(IM\) \( \Rightarrow IH = \frac{1}{2}IM = 2\).

Tam giác \(AIM\) cân tại \(A\) nên \(AH \bot IM\). Suy ra \({S_{IAM}} = \frac{1}{2}AH.IM \Rightarrow IH = \frac{{4.2}}{4} = 2\).

Do đó ta có \(I{A^2} = I{H^2} + A{H^2} = {2^2} + {2^2} = 8 \Rightarrow IA = 2\sqrt 2 \).

Ta thấy điểm \(A\) cách điểm \(I\) một khoảng không đổi nên quỹ tích điểm \(A\) là đường tròn tâm \(I\) bán kính \(2\sqrt 2 \).

Do đó điểm \(A\) di chuyển trên đường tròn có phương trình là \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} = 8\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP