Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(2{x^2} - 5x + 3 = 0\)

\(2{x^2} - 2x - 3x + 3 = 0\)

\(2x\left( {x - 1} \right) - 3\left( {x - 1} \right) = 0\)

\(\left( {x - 1} \right)\left( {2x - 3} \right) = 0\)

\(x - 1 = 0\) hoặc \(2x - 3 = 0\)

\(x = 1\) hoặc \(x = \frac{3}{2}\)

Vây phương trình có hai nghiệm là \(x = 1;\,\,x = \frac{3}{2}.\)

Câu hỏi cùng đoạn

Câu 2:

2) Thời gian \[t\] (tính bằng giây) từ khi một người bắt đầu nhảy bungee trên cao cách mặt nước \[d\] (tính bằng m) đến khi chạm mặt nước được cho bởi công thức: \[d = \frac{{9,8}}{3} \cdot {t^2}.\] Hãy tìm độ cao của người nhảy bungee so với mặt nước biết rằng thời gian từ khi người đó nhảy đến khi chạm mặt nước là 9 giây.
Hãy tìm độ cao của người nhảy bungee so với mặt nước biết rằng thời gian từ khi người đó nhảy đến khi chạm mặt nước là 9 giây. (ảnh 1)

Xem lời giải

verified Lời giải của GV VietJack

Thời gian từ khi người đó nhảy đến khi chạm mặt nước là 9 giây nên \[t = 9.\]

Thay \(t = 9\) vào \(d = \frac{{9,8}}{3} \cdot {t^2},\) ta được: \[d = \frac{{9,8 \cdot {9^2}}}{3} = \frac{{9,8 \cdot 81}}{3} = 264,6.\]

Vậy độ cao của người nhảy bungee so với mặt nước là 264,6 (m).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Với \(a > 0,\,\,a \ne 1,\) ta có:

\(A = \left( {\frac{{\sqrt a }}{{\sqrt a - 1}} + \frac{1}{{\sqrt a - a}}} \right):\left( {\frac{1}{{\sqrt a + 1}} + \frac{2}{{a - 1}}} \right)\)

 \[ = \left[ {\frac{{\sqrt a }}{{\sqrt a - 1}} - \frac{1}{{\sqrt a \left( {\sqrt a - 1} \right)}}} \right]:\left[ {\frac{1}{{\sqrt a + 1}} + \frac{2}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}} \right]\]

 \( = \left[ {\frac{{\sqrt a \cdot \sqrt a }}{{\sqrt a \left( {\sqrt a - 1} \right)}} - \frac{1}{{\sqrt a \left( {\sqrt a - 1} \right)}}} \right]:\left[ {\frac{{\sqrt a - 1}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}} + \frac{2}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}} \right]\)

 \( = \frac{{a - 1}}{{\sqrt a \left( {\sqrt a - 1} \right)}}:\frac{{\sqrt a - 1 + 2}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}\)

 \( = \frac{{a - 1}}{{\sqrt a \left( {\sqrt a - 1} \right)}} \cdot \frac{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}{{\sqrt a + 1}}\)

 \( = \frac{{a - 1}}{{\sqrt a }}.\)

Vậy với \(a > 0,\,\,a \ne 1\) thì \(A = \frac{{a - 1}}{{\sqrt a }}.\)

Câu 2

Tính diện tích phần kẻ sọc ở hình sau, giới hạn bởi nửa đường tròn đường kính \(LM\) và hai nửa đường tròn có đường kính tương ứng là \(LN = 8\,{\rm{cm}}\) \(NM = 4\,{\rm{cm}}{\rm{.}}\)

Tính diện tích phần kẻ sọc ở hình sau (ảnh 1)

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có: \(LM = LN + NM = 8 + 4 = 12{\rm{\;(cm)}}{\rm{.}}\)

Diện tích nửa hình tròn đường kính \(LN\) là: \({S_1} = \frac{1}{2} \cdot \pi \cdot {\left( {\frac{8}{2}} \right)^2} = 8\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Diện tích nửa hình tròn đường kính \(LM\) là: \({S_2} = \frac{1}{2} \cdot \pi \cdot {\left( {\frac{{12}}{2}} \right)^2} = 18\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Diện tích nửa hình tròn đường kính \(NM\) là: \({S_3} = \frac{1}{2} \cdot \pi \cdot {\left( {\frac{4}{2}} \right)^2} = 2\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Diện tích phần kẻ sọc ở hình đã cho là: \(S = {S_2} - {S_1} + {S_3} = 18\pi - 8\pi + 2\pi = 12\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Căn bậc hai số học của \(100\) bằng         

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Đồ thị hàm số \(y = - \frac{1}{{\sqrt 3 }}{x^2}\) đi qua điểm nào dưới đây?          

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay