Câu hỏi:
12/04/2025 461Bạn Hoa dự định dùng hết số tiền 600 nghìn đồng để mua một số chiếc áo đồng giá tặng các bạn có hoàn cảnh khó khăn. Khi đến cửa hàng, loại áo mà bạn Hoa dự định mua được giảm giá 30 nghìn đồng/chiếc. Do vậy, bạn Hoa đã mua được số lượng áo gấp 1,25 lần so với số lượng dự định. Tính giá tiền của mỗi chiếc áo mà bạn Hoa đã mua.
Quảng cáo
Trả lời:
Lời giải
Gọi giá tiền của mỗi chiếc áo mà bạn Hoa đã mua là \(x\) (nghìn đồng), \(x > 30\).
Giá tiền của chiếc áo sau khi giảm giá 30 nghìn đồng/chiếc là \(x - 30\)(nghìn đồng).
Số chiếc áo bạn Hoa dự định mua là \(\frac{{600}}{x}\) (chiếc). Số chiếc áo bạn Hoa đã mua thực tế là \(\frac{{600}}{{x - 30}}\) (chiếc).
Theo bài, thực tết bạn Hoa đã mua được số lượng áo gấp 1,25 lần so với số lượng dự định nên ta có phương trình: \(\frac{{600}}{{x - 30}} = 1,25.\frac{{600}}{x}\).
Giải phương trình \(\frac{{600}}{{x - 30}} = 1,25.\frac{{600}}{x}\)\( \Leftrightarrow \frac{{600x}}{{x\left( {x - 30} \right)}} = \frac{{1,25.600.\left( {x - 30} \right)}}{{x\left( {x - 30} \right)}}\)
\( \Rightarrow 600x = 1,25.600.\left( {x - 30} \right)\)\( \Leftrightarrow - 150x = - 22500\)\( \Leftrightarrow x = 150{\rm{ }}\left( {TM} \right)\)
Vậy giá tiền của mỗi chiếc áo mà bạn Hoa đã mua là 150 nghìn đồng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Gọi \(x\left( {{\rm{\;m}}} \right)\) là chiều dài của khu đất với \(x > 16\). Khi đó, chiều rộng của khu đất là \(x - 16\left( {{\rm{\;m}}} \right)\) và mảnh vườn trồng hoa có \(AC = x - 16\left( {{\rm{\;m}}} \right)\) và \(BD = x\left( {{\rm{\;m}}} \right)\).
Do đó, diện tích của khu đất là: \(\left( {x - 16} \right)x\left( {{\rm{\;}}{{\rm{m}}^2}} \right)\) và diện tích của mảnh vườn trồng hoa là: \(\frac{1}{2}\left( {x - 16} \right)x\left( {{\rm{\;}}{{\rm{m}}^2}} \right)\). Vì diện tích của phần đất còn lại là \(96{\rm{\;}}{{\rm{m}}^2}\) nên ta có phương trình: \(\left( {x - 16} \right)x - \frac{1}{2}\left( {x - 16} \right)x = 96\) hay \(\frac{1}{2}\left( {x - 16} \right)x = 96\). Tức là, \({x^2} - 16x - 192 = 0\).
Giải phương trình:
\({x^2} - 16x - 192 = 0\)
\(\left( {{x^2} - 16x + 64} \right) - 256 = 0\)
\({(x - 8)^2} - {16^2} = 0\)
\(\left( {x - 24} \right)\left( {x + 8} \right) = 0\)
\[x = 24\] hoặc \(x\)\( = - 8\)
Do \(x > 16\) nên \(x = 24\). Vậy chiều dài của khu đất là \(24{\rm{\;m}}\).
Lời giải
Lời giải
Gọi \(x\) (sản phẩm/giờ) là năng suất dự định của người công nhân đó với \(x \in {\mathbb{N}^{\rm{*}}}\). Khi đó, năng suất thực tế của người đó là \(x + 3\) (sản phẩgiờ).
Theo giả thiết, ta có phương trình: \(\frac{{14}}{x} = \frac{{21}}{{x + 3}}\).
Giải phương trình:
\[\begin{array}{*{20}{r}}{\frac{{14}}{x}}&{\; = \frac{{21}}{{x + 3}}}\\{\frac{{14\left( {x + 3} \right)}}{{x\left( {x + 3} \right)}}}&{\; = \frac{{21x}}{{x\left( {x + 3} \right)}}}\\{14\left( {x + 3} \right)}&{\; = 21x}\\{14x + 42}&{\; = 21x}\\{7x}&{\; = 42}\\x&{\left. { = 6{\rm{ }}\;{\rm{ (tho}}a{\rm{ }}\;{\rm{ m }}\widetilde {\rm{a}}{\rm{ n }}\;{\rm{ }}x \in {\mathbb{N}^{\rm{*}}}} \right).}\end{array}\]
Vậy năng suất dự định của người công nhân đó là 6 sản phẩm/giờ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.