Câu hỏi:

12/04/2025 268

Bạn Hoa dự định dùng hết số tiền 600 nghìn đồng để mua một số chiếc áo đồng giá tặng các bạn có hoàn cảnh khó khăn. Khi đến cửa hàng, loại áo mà bạn Hoa dự định mua được giảm giá 30 nghìn đồng/chiếc. Do vậy, bạn Hoa đã mua được số lượng áo gấp 1,25 lần so với số lượng dự định. Tính giá tiền của mỗi chiếc áo mà bạn Hoa đã mua.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Gọi giá tiền của mỗi chiếc áo mà bạn Hoa đã mua là \(x\) (nghìn đồng), \(x > 30\).

Giá tiền của chiếc áo sau khi giảm giá 30 nghìn đồng/chiếc là \(x - 30\)(nghìn đồng).

Số chiếc áo bạn Hoa dự định mua là \(\frac{{600}}{x}\) (chiếc). Số chiếc áo bạn Hoa đã mua thực tế là \(\frac{{600}}{{x - 30}}\) (chiếc).

Theo bài, thực tết bạn Hoa đã mua được số lượng áo gấp 1,25 lần so với số lượng dự định nên ta có phương trình: \(\frac{{600}}{{x - 30}} = 1,25.\frac{{600}}{x}\).

Giải phương trình \(\frac{{600}}{{x - 30}} = 1,25.\frac{{600}}{x}\)\( \Leftrightarrow \frac{{600x}}{{x\left( {x - 30} \right)}} = \frac{{1,25.600.\left( {x - 30} \right)}}{{x\left( {x - 30} \right)}}\)

\( \Rightarrow 600x = 1,25.600.\left( {x - 30} \right)\)\( \Leftrightarrow - 150x = - 22500\)\( \Leftrightarrow x = 150{\rm{ }}\left( {TM} \right)\)

Vậy giá tiền của mỗi chiếc áo mà bạn Hoa đã mua là 150 nghìn đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Gọi \(x\left( {{\rm{\;m}}} \right)\) là chiều dài của khu đất với \(x > 16\). Khi đó, chiều rộng của khu đất là \(x - 16\left( {{\rm{\;m}}} \right)\) và mảnh vườn trồng hoa có \(AC = x - 16\left( {{\rm{\;m}}} \right)\) và \(BD = x\left( {{\rm{\;m}}} \right)\).

Do đó, diện tích của khu đất là: \(\left( {x - 16} \right)x\left( {{\rm{\;}}{{\rm{m}}^2}} \right)\) và diện tích của mảnh vườn trồng hoa là: \(\frac{1}{2}\left( {x - 16} \right)x\left( {{\rm{\;}}{{\rm{m}}^2}} \right)\). Vì diện tích của phần đất còn lại là \(96{\rm{\;}}{{\rm{m}}^2}\) nên ta có phương trình: \(\left( {x - 16} \right)x - \frac{1}{2}\left( {x - 16} \right)x = 96\) hay \(\frac{1}{2}\left( {x - 16} \right)x = 96\). Tức là, \({x^2} - 16x - 192 = 0\).

Giải phương trình:

\({x^2} - 16x - 192 = 0\)

\(\left( {{x^2} - 16x + 64} \right) - 256 = 0\)

\({(x - 8)^2} - {16^2} = 0\)

\(\left( {x - 24} \right)\left( {x + 8} \right) = 0\)

\[x = 24\] hoặc \(x\)\( = - 8\)

Do \(x > 16\) nên \(x = 24\). Vậy chiều dài của khu đất là \(24{\rm{\;m}}\).

Lời giải

Lời giải

Gọi \(x(\;{\rm{km}}/{\rm{h}})\) là tốc độ của xe đạp \(({\rm{x}} > 0)\).

Tốc độ của xe máy là \(4{\rm{x}}({\rm{km}}/{\rm{h}})\).

Thời gian xe đạp đi từ A đến B là \(\frac{{60}}{{\rm{x}}}\) (giờ).

Thời gian xe máy đi từ A đến B là \(\frac{{60}}{{4{\rm{x}}}}\) (giờ).

Ta có phương trình: \(\frac{{60}}{x} - \frac{{60}}{{4x}} = 3\)

\(60 \cdot 4 - 60 = 3 \cdot 4x\)

\(12x = 180\)

\(x = 15\)(thoả mãn).

Vậy tốc độ của xe đạp là \(15\;{\rm{km}}/{\rm{h}}\), tốc độ của xe máy là \(60\;{\rm{km}}/{\rm{h}}\).

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay