Câu hỏi:

12/04/2025 154

Một xí nghiệp dự định chia đều 12 600 000 đồng để thưởng cho các công nhân tham gia hội thao nhân ngày thành lập xí nghiệp. Khi đến ngày hội thao chỉ có 80% số công nhân tham gia, vì thế mỗi người tham gia hội thao được nhận thêm 105 000 đồng. Tính số công nhân dự định tham gia lúc đầu.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Gọi số công nhân dự định tham gia lúc đầu là \(x\) (người), \(x \in {\mathbb{N}^*}\).

Số tiền thưởng dự định mỗi công nhân nhận được là \(\frac{{12{\rm{ }}600{\rm{ }}000}}{x}\) (đồng).

Số công nhận thực tế tham gia là \(80\% x = 0,8x\) (người).

Số tiền thưởng thực tế mỗi công nhân nhận được là \(\frac{{12{\rm{ }}600{\rm{ }}000}}{{0,8x}} = \frac{{15{\rm{ }}750{\rm{ }}000}}{x}\) (đồng).

Vì thực tế mỗi người tham gia hội thảo được nhận thêm 105 000 đồng nên ta có phương trình:

\(\frac{{15{\rm{ }}750{\rm{ }}000}}{x} - \frac{{12{\rm{ }}600{\rm{ }}000}}{{0,8x}} = 105{\rm{ 000}}\)\(\frac{{3{\rm{ }}150{\rm{ }}000}}{x} = \frac{{105{\rm{ }}000x}}{x}\)

=>\(3{\rm{ }}150{\rm{ }}000 = 10{\rm{ }}5000x\)\(x = 30\)(thoả mãn điều kiện)

Vậy số công nhân dự định tham gia lúc đầu là 30 người.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Gọi \(x\left( {{\rm{\;m}}} \right)\) là chiều dài của khu đất với \(x > 16\). Khi đó, chiều rộng của khu đất là \(x - 16\left( {{\rm{\;m}}} \right)\) và mảnh vườn trồng hoa có \(AC = x - 16\left( {{\rm{\;m}}} \right)\) và \(BD = x\left( {{\rm{\;m}}} \right)\).

Do đó, diện tích của khu đất là: \(\left( {x - 16} \right)x\left( {{\rm{\;}}{{\rm{m}}^2}} \right)\) và diện tích của mảnh vườn trồng hoa là: \(\frac{1}{2}\left( {x - 16} \right)x\left( {{\rm{\;}}{{\rm{m}}^2}} \right)\). Vì diện tích của phần đất còn lại là \(96{\rm{\;}}{{\rm{m}}^2}\) nên ta có phương trình: \(\left( {x - 16} \right)x - \frac{1}{2}\left( {x - 16} \right)x = 96\) hay \(\frac{1}{2}\left( {x - 16} \right)x = 96\). Tức là, \({x^2} - 16x - 192 = 0\).

Giải phương trình:

\({x^2} - 16x - 192 = 0\)

\(\left( {{x^2} - 16x + 64} \right) - 256 = 0\)

\({(x - 8)^2} - {16^2} = 0\)

\(\left( {x - 24} \right)\left( {x + 8} \right) = 0\)

\[x = 24\] hoặc \(x\)\( = - 8\)

Do \(x > 16\) nên \(x = 24\). Vậy chiều dài của khu đất là \(24{\rm{\;m}}\).

Lời giải

Lời giải

Gọi \(x(\;{\rm{km}}/{\rm{h}})\) là tốc độ của xe đạp \(({\rm{x}} > 0)\).

Tốc độ của xe máy là \(4{\rm{x}}({\rm{km}}/{\rm{h}})\).

Thời gian xe đạp đi từ A đến B là \(\frac{{60}}{{\rm{x}}}\) (giờ).

Thời gian xe máy đi từ A đến B là \(\frac{{60}}{{4{\rm{x}}}}\) (giờ).

Ta có phương trình: \(\frac{{60}}{x} - \frac{{60}}{{4x}} = 3\)

\(60 \cdot 4 - 60 = 3 \cdot 4x\)

\(12x = 180\)

\(x = 15\)(thoả mãn).

Vậy tốc độ của xe đạp là \(15\;{\rm{km}}/{\rm{h}}\), tốc độ của xe máy là \(60\;{\rm{km}}/{\rm{h}}\).

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay