Câu hỏi:

13/04/2025 115 Lưu

Có hai lọ thủy tinh hình trụ, lọ thứ nhất phía bên trong có đường kính đáy là \(30cm\), chiều cao \(20cm\), đựng đầy nước. Lọ thứ hai bên trong có đường kính đáy là \(40cm\), chiều cao \(12cm\). Hỏi nếu đổ hết nước từ trong lọ thứ nhất sang lọ thứ hai nước có bị tràn ra ngoài không ? Tại sao ? (Lấy \(\pi \approx 3,14\))

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Gọi thể tích lọ thủy tinh có đường kính đáy là \(30cm\), chiều cao \(20cm\)là \({V_1}\) \( \Rightarrow {V_1} = \pi .{\left( {\frac{{30}}{2}} \right)^2}.20 \approx 3,14.4500\)
Gọi thể tích lọ thứ hai bên trong có đường kính đáy là \(40cm\), chiều cao \(12cm\) là \({V_2}\) \( \Rightarrow {V_2} = \pi .{\left( {\frac{{40}}{2}} \right)^2}.12 \approx 3,14.4800\)
Vậy \({V_1} < {V_2}\), do đó nếu đổ hết nước từ lọ thứ nhất sang lọ thứ 2 sẽ không bị tràn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đổi \(5{\rm{ cm }} = {\rm{ }}0,05{\rm{ m}}\), \(23{\rm{ cm }} = {\rm{ }}0,23{\rm{ m}}\).
Diện tích tường được sơn khi lăn cây lăn sơn 1 vòng bằng diện tích xung quanh của hình trụ có bán kính \(0,05{\rm{ m}}\) và chiều cao \(0,23{\rm{ m}}\).
Diện tích xung quanh của hình trụ bằng:\({S_{xq}} = 2\pi rh = 2 \times 3,14 \times 0,05 \times 0,23 = 0,023\pi \) \(\left( {{{\rm{m}}^2}} \right)\)
Diện tích mỗi cây sơn có thể sơn được là \(1000 \times {S_{xq}} = 23\pi {\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Vì \(\frac{{100}}{{23\pi }} \approx 1,38\) nên số cây lăn sơn tối thiểu cần phải mua là \(2\) cây.

Lời giải

Ta có: \[{V_A} = \frac{1}{3}\pi {r^2}h = \frac{1}{3}.\pi {.3^2}.6 = 18\pi \]
\[\begin{array}{l}{V_{\bf{B}}} = \pi {r^2}h = \pi {.3^2}.6 = 54\pi \\ \Rightarrow {V_B} = 3{V_A}\end{array}\]
Mà giá quầy hàng \[B\] gấp \[2\] lần giá quầy hàng \[A\]
Vậy bạn \[H\] nên mua bắp rang bơ ở quầy \[B\] thì có lợi hơn