Có hai lọ thủy tinh hình trụ, lọ thứ nhất phía bên trong có đường kính đáy là \(30cm\), chiều cao \(20cm\), đựng đầy nước. Lọ thứ hai bên trong có đường kính đáy là \(40cm\), chiều cao \(12cm\). Hỏi nếu đổ hết nước từ trong lọ thứ nhất sang lọ thứ hai nước có bị tràn ra ngoài không ? Tại sao ? (Lấy \(\pi \approx 3,14\))
Câu hỏi trong đề: 123 bài tập Nón trụ cầu và hình khối có lời giải !!
Quảng cáo
Trả lời:
Gọi thể tích lọ thứ hai bên trong có đường kính đáy là \(40cm\), chiều cao \(12cm\) là \({V_2}\) \( \Rightarrow {V_2} = \pi .{\left( {\frac{{40}}{2}} \right)^2}.12 \approx 3,14.4800\)
Vậy \({V_1} < {V_2}\), do đó nếu đổ hết nước từ lọ thứ nhất sang lọ thứ 2 sẽ không bị tràn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Diện tích tường được sơn khi lăn cây lăn sơn 1 vòng bằng diện tích xung quanh của hình trụ có bán kính \(0,05{\rm{ m}}\) và chiều cao \(0,23{\rm{ m}}\).
Diện tích xung quanh của hình trụ bằng:\({S_{xq}} = 2\pi rh = 2 \times 3,14 \times 0,05 \times 0,23 = 0,023\pi \) \(\left( {{{\rm{m}}^2}} \right)\)
Diện tích mỗi cây sơn có thể sơn được là \(1000 \times {S_{xq}} = 23\pi {\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Vì \(\frac{{100}}{{23\pi }} \approx 1,38\) nên số cây lăn sơn tối thiểu cần phải mua là \(2\) cây.
Lời giải
\[\begin{array}{l}{V_{\bf{B}}} = \pi {r^2}h = \pi {.3^2}.6 = 54\pi \\ \Rightarrow {V_B} = 3{V_A}\end{array}\]
Mà giá quầy hàng \[B\] gấp \[2\] lần giá quầy hàng \[A\]
Vậy bạn \[H\] nên mua bắp rang bơ ở quầy \[B\] thì có lợi hơn
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.