Câu hỏi:
13/04/2025 100
Một cái bánh hình trụ có bán kính đường tròn đáy là 3cm, chiều cao 4cm được đặt thẳng đứng trên mặt bàn. Một phần của cái bánh bị cắt rời ra theo các bán kính OA, OB và theo chiều thẳng đứng từ trên xuống dưới với . Tính thể tích phần còn lại của cái bánh sau khi cắt.
Câu hỏi trong đề: 123 bài tập Nón trụ cầu và hình khối có lời giải !!
Quảng cáo
Trả lời:
Phần cái bánh còn lại: \(1 - \frac{1}{{12}} = \frac{{11}}{{12}}\) (cái bánh)
Thể tích phần còn lại của cái bánh: \(\pi {.3^2}.4.\frac{{11}}{{12}} = 33\pi \) (\(c{m^3}\))\[ \approx 103,62\left( {c{m^3}} \right)\]
Vậy thể tích phần còn lại của cái bánh là \[103,62\,c{m^3}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Diện tích tường được sơn khi lăn cây lăn sơn 1 vòng bằng diện tích xung quanh của hình trụ có bán kính \(0,05{\rm{ m}}\) và chiều cao \(0,23{\rm{ m}}\).
Diện tích xung quanh của hình trụ bằng:\({S_{xq}} = 2\pi rh = 2 \times 3,14 \times 0,05 \times 0,23 = 0,023\pi \) \(\left( {{{\rm{m}}^2}} \right)\)
Diện tích mỗi cây sơn có thể sơn được là \(1000 \times {S_{xq}} = 23\pi {\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Vì \(\frac{{100}}{{23\pi }} \approx 1,38\) nên số cây lăn sơn tối thiểu cần phải mua là \(2\) cây.
Lời giải
\[\begin{array}{l}{V_{\bf{B}}} = \pi {r^2}h = \pi {.3^2}.6 = 54\pi \\ \Rightarrow {V_B} = 3{V_A}\end{array}\]
Mà giá quầy hàng \[B\] gấp \[2\] lần giá quầy hàng \[A\]
Vậy bạn \[H\] nên mua bắp rang bơ ở quầy \[B\] thì có lợi hơn
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.