Câu hỏi:

13/04/2025 367

Một cốc nước hình trụ cao 15cm, đường kính đáy là 6cm. Lượng nước ban đầu cao 10cm. Thả vào cốc 5 viên bi hình cầu cùng đường kính 2cm. Hỏi sau khi thả 5 viên bi mực nước cách miệng cốc bao nhiêu cm? (Làm tròn lấy 2 chữ số thập phân).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Thể tích của 5 viên bi:
\[5.\frac{4}{3}.\pi .{\left( {\frac{2}{2}} \right)^3} = \frac{{20}}{3}\pi (c{m^3})\]
Chiều cao mực nước dâng lên thêm sau khi thả 5 viên bi là
\[\frac{{20}}{3}\pi :\left[ {\pi {{\left( {\frac{6}{2}} \right)}^2}} \right] = \frac{{20}}{{27}}(cm)\]
Mực nước cách miệng cốc 1 khoảng là:
\[15--10--\;\frac{{20}}{{27}} \approx 4,26(cm)\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đổi \(5{\rm{ cm }} = {\rm{ }}0,05{\rm{ m}}\), \(23{\rm{ cm }} = {\rm{ }}0,23{\rm{ m}}\).
Diện tích tường được sơn khi lăn cây lăn sơn 1 vòng bằng diện tích xung quanh của hình trụ có bán kính \(0,05{\rm{ m}}\) và chiều cao \(0,23{\rm{ m}}\).
Diện tích xung quanh của hình trụ bằng:\({S_{xq}} = 2\pi rh = 2 \times 3,14 \times 0,05 \times 0,23 = 0,023\pi \) \(\left( {{{\rm{m}}^2}} \right)\)
Diện tích mỗi cây sơn có thể sơn được là \(1000 \times {S_{xq}} = 23\pi {\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Vì \(\frac{{100}}{{23\pi }} \approx 1,38\) nên số cây lăn sơn tối thiểu cần phải mua là \(2\) cây.

Lời giải

Ta có: \[{V_A} = \frac{1}{3}\pi {r^2}h = \frac{1}{3}.\pi {.3^2}.6 = 18\pi \]
\[\begin{array}{l}{V_{\bf{B}}} = \pi {r^2}h = \pi {.3^2}.6 = 54\pi \\ \Rightarrow {V_B} = 3{V_A}\end{array}\]
Mà giá quầy hàng \[B\] gấp \[2\] lần giá quầy hàng \[A\]
Vậy bạn \[H\] nên mua bắp rang bơ ở quầy \[B\] thì có lợi hơn