Câu hỏi:

13/04/2025 761

Bạn An làm một mô hình kim tự tháp để giới thiệu về lịch sử Ai Cập cổ đại. Vì kích thước của khu trưng bày, An quyết định làm mô hình kim tự tháp từ một tấm bìa hình vuông có cạnh là 5 dm. Nhờ sự giúp đỡ của thầy, An đã tạo một mô hình kim tự tháp bằng cách cắt bỏ bốn tam giác cân bằng nhau có đáy là cạnh của hình vuông rồi gấp lên sau đó ghép lại để thành một hình chóp tứ giác đều như hình vẽ. An đã cắt miếng bia trên sao cho cạnh đáy của khối chóp tứ giác đều là \(2\sqrt 2 dm\). Em hãy tính thể tích của khối chóp tứ giác đều đó (theo đơn vị\(d{m^3}\)), biết thể tích của hình chóp được tính theo công thức: \(V = \frac{1}{3}\;S.h\), trong đó \(S\) là diện tích mặt đáy, \(h\) là chiều cao hình chóp, các mặt bên của hình chóp tứ giác đều là các tam giác cân bằng nhau, \(CB \bot GH\) và \(A\) là tâm hình vuông.
aaaaaaaaaaaa (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Áp dụng định lí Pythagore vào tam giác $C D E$ vuông cân tại \(E\), ta có: \(CD = 5\sqrt 2 ({\rm{dm}})\). \({\rm{DF}} + {\rm{FB}} + {\rm{BC}} = {\rm{CD}} \Leftrightarrow 2{\rm{BC}} = {\rm{CD}} - {\rm{BF}} = 5\sqrt 2 - 2\sqrt 2 = 3\sqrt 2 \Rightarrow {\rm{BC}} = \frac{{3\sqrt 2 }}{2}({\rm{dm}})\)
(Vì \({\rm{BC}} = {\rm{DF}}\), tính chất hình chóp tứ giác đều)
Áp dụng định lí Pythagore, ta có: \({\rm{C}}{{\rm{A}}^2} + {\rm{A}}{{\rm{B}}^2} = {\rm{B}}{{\rm{C}}^2} \Leftrightarrow {\rm{C}}{{\rm{A}}^2} = {\rm{B}}{{\rm{C}}^2} - {\rm{A}}{{\rm{B}}^2}\)
\( \Leftrightarrow {{\rm{h}}^2} = {\left( {\frac{{3\sqrt 2 }}{2}} \right)^2} - {\left( {\frac{{2\sqrt 2 }}{2}} \right)^2} \Leftrightarrow {\rm{h}} = \frac{{\sqrt {10} }}{2}({\rm{dm}})\)
Thể tích của khối chóp tứ giác đều là: \({\rm{V}} = \frac{1}{3} \cdot {\rm{B}}{{\rm{F}}^2} \cdot {\rm{CA}} = \frac{1}{3} \cdot {(2\sqrt 2 )^2} \cdot \frac{{\sqrt {10} }}{2} = 4,22{\rm{d}}{{\rm{m}}^3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đổi \(5{\rm{ cm }} = {\rm{ }}0,05{\rm{ m}}\), \(23{\rm{ cm }} = {\rm{ }}0,23{\rm{ m}}\).
Diện tích tường được sơn khi lăn cây lăn sơn 1 vòng bằng diện tích xung quanh của hình trụ có bán kính \(0,05{\rm{ m}}\) và chiều cao \(0,23{\rm{ m}}\).
Diện tích xung quanh của hình trụ bằng:\({S_{xq}} = 2\pi rh = 2 \times 3,14 \times 0,05 \times 0,23 = 0,023\pi \) \(\left( {{{\rm{m}}^2}} \right)\)
Diện tích mỗi cây sơn có thể sơn được là \(1000 \times {S_{xq}} = 23\pi {\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Vì \(\frac{{100}}{{23\pi }} \approx 1,38\) nên số cây lăn sơn tối thiểu cần phải mua là \(2\) cây.

Lời giải

Ta có: \[{V_A} = \frac{1}{3}\pi {r^2}h = \frac{1}{3}.\pi {.3^2}.6 = 18\pi \]
\[\begin{array}{l}{V_{\bf{B}}} = \pi {r^2}h = \pi {.3^2}.6 = 54\pi \\ \Rightarrow {V_B} = 3{V_A}\end{array}\]
Mà giá quầy hàng \[B\] gấp \[2\] lần giá quầy hàng \[A\]
Vậy bạn \[H\] nên mua bắp rang bơ ở quầy \[B\] thì có lợi hơn
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay