Câu hỏi:

13/04/2025 326

Gieo đồng thời hai con xúc xắc cân đối,  đồng chất I và II.  Tính xác suất của các biến cố sau:

E: “Có đúng 1 con xúc xắc xuất hiện mặt 6 chấm”

F: “Có ít nhất một con xúc xắc xuất hiện mặt 6 chấm”

G: “Tích của hai số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc bằng 6”

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gieo đồng thời hai con xúc xắc cân đối,  đồng chất I và II

Ta có khoogn gian mẫu: n(Ω) = 6. 6 = 36

*E: “Có đúng 1 con xúc xắc xuất hiện mặt 6 chấm”

- Xúc sắc I xuất hiện mặt 6 chấm,  xúc xắc II có thể xuất hiện 5 khả năng  suy ra 1. 5 = 5

- Xúc sắc II xuất hiện mặt 6 chấm,  xúc xắc I có thể xuất hiện 5 khả năng  suy ra 1. 5 = 5

suy ra n(E) = 5+ 5 = 10

Do đó xác suất \(P\left( E \right) = \frac{{10}}{{36}} = \frac{5}{{18}}\)

*F: "Có ít nhất một con xúc xắc xuất hiện mặt 6 chấm”

- Trường hợp có 1 xúc xắc xuất hiện mặt 6 chấm suy ra 1. 5+ 5. 1 = 10 khả năng

- Trường hợp 2,  cả hai xúc xắc đều là 6 chấm  suy ra có 1. 1 khả năng 

suy ra n(F) = 10+ 1 = 11

Do đó xác suất \(P\left( F \right) = \frac{{11}}{{36}}\)

* G:”Tích của hai số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc bằng 6”

Những trường hợp tích hai số chấm xuất hiện trên con xúc xắc nhỏ hơn hoặc bằng 6 là: (1, 1); (1, 2); (1, 3); (1, 4); (1, 5); (2, 1); (2, 2); (2, 3); (3, 1); (3, 2); (4, 1); (5, 1)

Suy ra n(G) = 12

Do đó xác suất \(P\left( G \right) = \frac{{12}}{{36}} = \frac{1}{3}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi quả bóng màu trắng là \(T\), quả bóng màu đỏ là , quả bóng màu vàng là \(V\):

Không gian mẫu: . Số phần tử của không gian mẫu: \(n\left( \Omega \right) = 4\).

b) Kết quả lấy ra có đúng 1 quả bóng màu đỏ là và nên \(n\left( {\rm{A}} \right) = 2\). Xác suất của biến cố \(A\) là: \(\frac{2}{4} = 0,5\)

Lời giải

Số cách lấy lần lượt 2 viên bi từ hộp là \(10.9 = 90\) (cách).

Nếu lần 1 lấy được bi đỏ và lần 2 lấy được bi xanh thì có \(6.4 = 24\) (cách).

Nếu lần 1 lấy được bi xanh và lần 2 cũng là bi xanh thì có \(4.3 = 12\) (cách).

Suy ra xác suất cần tìm là \(p = \frac{{\left( {24 + 12} \right)}}{{90}} = \frac{4}{{10}}\).

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay