Câu hỏi:

06/05/2025 129

Câu 4-5. (1,0 điểm) Một cây cầu treo có trụ tháp đôi cao 75 m so với mặt của cây cầu và cách nhau 400 m. Các dây cáp có dạng đồ thị của hàm số \(y = a{x^2}\,\,\left( {a \ne 0} \right)\) như hình bên và được treo trên đỉnh tháp.

1) Xác định hệ số \(a\) của hàm số trên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Vì đồ thị hàm số \(y = a{x^2}\,\,\left( {a \ne 0} \right)\) đi qua điểm \(B\left( {200;\,\,75} \right)\) nên thay \(x = 200;y = 75\) vào công thức \(y = a{x^2}\,\,\left( {a \ne 0} \right),\) ta được:

\(75 = a \cdot {200^2}\) suy ra \(a = \frac{3}{{1\,\,600}}.\)

Câu hỏi cùng đoạn

Câu 2:

2) Tìm chiều cao \(CH\) của dây cáp biết điểm \(H\) cách tâm \(O\) của cây cầu 100 m (giả sử mặt của cây cầu là bằng phẳng).

Xem lời giải

verified Lời giải của GV VietJack

b) Với \(a = \frac{3}{{1\,\,600}},\) ta có hàm số là \(y = \frac{3}{{1\,\,600}}{x^2}.\)

Điểm \(H\) thuộc đồ thị hàm số trên và có hoành độ 100 nên thay \(x = 100\) vào công thức hàm số \(y = \frac{3}{{1600}}{x^2},\) ta được:

\(y = \frac{3}{{1\,\,600}} \cdot {100^2} = 18,75.\)

Vậy chiều \[CH\] của dây cáp là \(18,75\) m.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1) Tổng số học sinh là \(n = 40.\)

Ti lệ học sinh đạt điểm 5 là: \({f_1} = \frac{4}{{40}} \cdot 100\% = 10\% .\)

Tỉ lệ học sinh đạt điểm 6 là: \({f_2} = \frac{8}{{40}} \cdot 100\% = 20\% .\)

Tỉ lệ học sinh đạt điểm 7 là: \({f_3} = \frac{{10}}{{40}} \cdot 100\% = 25\% .\)

Tỉ lệ học sinh đạt điểm 8 là: \({f_4} = \frac{{12}}{{40}} \cdot 100\% = 30\% .\)

Ti lệ học sinh đạt điểm 9 là: \({f_5} = \frac{6}{{40}} \cdot 100\% = 15\% .\)

Ta có bảng tần số tương đối:

Điểm

5

6

7

8

9

Tần số tương đối

\(10\% \)

\(20\% \)

\(25\% \)

\(30\% \)

\(15\% \)

Lời giải

Hướng dẫn giải

1) Giải phương trình: \(3{x^2} - 7x + 2 = 0\)

Phương trình có \(\Delta = {\left( { - 7} \right)^2} - 4 \cdot 3 \cdot 2 = 25 > 0\)\(\sqrt \Delta   = \sqrt {25} = 5.\)

Do đó, phương trình đã cho có hai nghiệm phân biệt là:

\({x_1} = \frac{{7 + 5}}{{2 \cdot 3}} = 2;\,\,{x_1} = \frac{{7 - 5}}{{2 \cdot 3}} = \frac{1}{3}.\)

2) Xét hệ phương trình \(\left\{ \begin{array}{l}x - 3y = 5\,\,\,\,\,\,\,\,\,\left( 1 \right)\\3x + 2y = 4\,\,\,\,\,\,\left( 2 \right)\end{array} \right..\)

Từ phương trình (1) của hệ ta có \(x = 3y + 5\,\,\,(3),\) thế vào phương trình (2) của hệ, ta được:

\[3\left( {3y + 5} \right) + 2y = 4\] hay \(11y = - 11,\) suy ra \(y = - 1.\)

Thay \(y = - 1\) vào phương trình (3), ta được:

\(x = 3 \cdot \left( { - 1} \right) + 5 = 2.\)

Vậy hệ phương trình đã cho có nghiệm là \(\left( {2;\,\, - 1} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay