Câu 4-5. (1,0 điểm) Một cây cầu treo có trụ tháp đôi cao 75 m so với mặt của cây cầu và cách nhau 400 m. Các dây cáp có dạng đồ thị của hàm số \(y = a{x^2}\,\,\left( {a \ne 0} \right)\) như hình bên và được treo trên đỉnh tháp.
1) Xác định hệ số \(a\) của hàm số trên.
Câu 4-5. (1,0 điểm) Một cây cầu treo có trụ tháp đôi cao 75 m so với mặt của cây cầu và cách nhau 400 m. Các dây cáp có dạng đồ thị của hàm số \(y = a{x^2}\,\,\left( {a \ne 0} \right)\) như hình bên và được treo trên đỉnh tháp.
1) Xác định hệ số \(a\) của hàm số trên.
Quảng cáo
Trả lời:
a) Vì đồ thị hàm số \(y = a{x^2}\,\,\left( {a \ne 0} \right)\) đi qua điểm \(B\left( {200;\,\,75} \right)\) nên thay \(x = 200;y = 75\) vào công thức \(y = a{x^2}\,\,\left( {a \ne 0} \right),\) ta được:
\(75 = a \cdot {200^2}\) suy ra \(a = \frac{3}{{1\,\,600}}.\)
Câu hỏi cùng đoạn
Câu 2:
2) Tìm chiều cao \(CH\) của dây cáp biết điểm \(H\) cách tâm \(O\) của cây cầu 100 m (giả sử mặt của cây cầu là bằng phẳng).
2) Tìm chiều cao \(CH\) của dây cáp biết điểm \(H\) cách tâm \(O\) của cây cầu 100 m (giả sử mặt của cây cầu là bằng phẳng).
Lời giải của GV VietJack
b) Với \(a = \frac{3}{{1\,\,600}},\) ta có hàm số là \(y = \frac{3}{{1\,\,600}}{x^2}.\)
Điểm \(H\) thuộc đồ thị hàm số trên và có hoành độ 100 nên thay \(x = 100\) vào công thức hàm số \(y = \frac{3}{{1600}}{x^2},\) ta được:
\(y = \frac{3}{{1\,\,600}} \cdot {100^2} = 18,75.\)
Vậy chiều \[CH\] của dây cáp là \(18,75\) m.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1) Tổng số học sinh là \(n = 40.\)
Ti lệ học sinh đạt điểm 5 là: \({f_1} = \frac{4}{{40}} \cdot 100\% = 10\% .\)
Tỉ lệ học sinh đạt điểm 6 là: \({f_2} = \frac{8}{{40}} \cdot 100\% = 20\% .\)
Tỉ lệ học sinh đạt điểm 7 là: \({f_3} = \frac{{10}}{{40}} \cdot 100\% = 25\% .\)
Tỉ lệ học sinh đạt điểm 8 là: \({f_4} = \frac{{12}}{{40}} \cdot 100\% = 30\% .\)
Ti lệ học sinh đạt điểm 9 là: \({f_5} = \frac{6}{{40}} \cdot 100\% = 15\% .\)
Ta có bảng tần số tương đối:
Điểm |
5 |
6 |
7 |
8 |
9 |
Tần số tương đối |
\(10\% \) |
\(20\% \) |
\(25\% \) |
\(30\% \) |
\(15\% \) |
Lời giải
Hướng dẫn giải
1) Chiều dài của phần đất làm nhà là: \(28 - \left( {y + 4} \right) = 24 - y\) (m).
Chiều rộng của phần đất làm nhà là: \(24 - y\) (m).
Vì các kích thước là số dương nên \(y > 0\) và \(24 - y > 0,\) suy ra \(y > 0\) và \(y < 24.\)
Biểu thức \(Q\) biểu diễn diện tích làm nhà là:
\(Q = {\left( {24 - y} \right)^2} = {y^2} - 48y + 576\) (m2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.