Câu hỏi:
06/05/2025 278
Câu 6-7. (1,0 điểm) Bác Nam có một mảnh đất hình chữ nhật với chiều dài 28 m và chiều rộng 24 m. Bác dự định xây nhà trên mảnh đất đó và dành một phần diện tích đất để làm sân vườn (như hình vẽ).

1) Viết biểu thức \(Q\) biểu diễn theo \(y\) diện tích đất làm nhà.
Câu 6-7. (1,0 điểm) Bác Nam có một mảnh đất hình chữ nhật với chiều dài 28 m và chiều rộng 24 m. Bác dự định xây nhà trên mảnh đất đó và dành một phần diện tích đất để làm sân vườn (như hình vẽ).
1) Viết biểu thức \(Q\) biểu diễn theo \(y\) diện tích đất làm nhà.
Quảng cáo
Trả lời:
Hướng dẫn giải
1) Chiều dài của phần đất làm nhà là: \(28 - \left( {y + 4} \right) = 24 - y\) (m).
Chiều rộng của phần đất làm nhà là: \(24 - y\) (m).
Vì các kích thước là số dương nên \(y > 0\) và \(24 - y > 0,\) suy ra \(y > 0\) và \(y < 24.\)
Biểu thức \(Q\) biểu diễn diện tích làm nhà là:
\(Q = {\left( {24 - y} \right)^2} = {y^2} - 48y + 576\) (m2).
Câu hỏi cùng đoạn
Câu 2:
2) Để diện tích đất làm nhà là 400 m2 thì giá trị \(y\) bằng bao nhiêu mét?
2) Để diện tích đất làm nhà là 400 m2 thì giá trị \(y\) bằng bao nhiêu mét?
Lời giải của GV VietJack
2) Thay \(Q = 400\) ta có:
\({y^2} - 48y + 576 = 400\)
\({y^2} - 48y + 176 = 0\)
\(y = 44\) hoặc \(y = 4.\)
So với điều kiện ta loại \(y = 44.\)
Vậy \(y = 4\) m.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1) Tổng số học sinh là \(n = 40.\)
Ti lệ học sinh đạt điểm 5 là: \({f_1} = \frac{4}{{40}} \cdot 100\% = 10\% .\)
Tỉ lệ học sinh đạt điểm 6 là: \({f_2} = \frac{8}{{40}} \cdot 100\% = 20\% .\)
Tỉ lệ học sinh đạt điểm 7 là: \({f_3} = \frac{{10}}{{40}} \cdot 100\% = 25\% .\)
Tỉ lệ học sinh đạt điểm 8 là: \({f_4} = \frac{{12}}{{40}} \cdot 100\% = 30\% .\)
Ti lệ học sinh đạt điểm 9 là: \({f_5} = \frac{6}{{40}} \cdot 100\% = 15\% .\)
Ta có bảng tần số tương đối:
Điểm |
5 |
6 |
7 |
8 |
9 |
Tần số tương đối |
\(10\% \) |
\(20\% \) |
\(25\% \) |
\(30\% \) |
\(15\% \) |
Lời giải
Hướng dẫn giải
1) Giải phương trình: \(3{x^2} - 7x + 2 = 0\)
Phương trình có \(\Delta = {\left( { - 7} \right)^2} - 4 \cdot 3 \cdot 2 = 25 > 0\) và \(\sqrt \Delta = \sqrt {25} = 5.\)
Do đó, phương trình đã cho có hai nghiệm phân biệt là:
\({x_1} = \frac{{7 + 5}}{{2 \cdot 3}} = 2;\,\,{x_1} = \frac{{7 - 5}}{{2 \cdot 3}} = \frac{1}{3}.\)
2) Xét hệ phương trình \(\left\{ \begin{array}{l}x - 3y = 5\,\,\,\,\,\,\,\,\,\left( 1 \right)\\3x + 2y = 4\,\,\,\,\,\,\left( 2 \right)\end{array} \right..\)
Từ phương trình (1) của hệ ta có \(x = 3y + 5\,\,\,(3),\) thế vào phương trình (2) của hệ, ta được:
\[3\left( {3y + 5} \right) + 2y = 4\] hay \(11y = - 11,\) suy ra \(y = - 1.\)
Thay \(y = - 1\) vào phương trình (3), ta được:
\(x = 3 \cdot \left( { - 1} \right) + 5 = 2.\)
Vậy hệ phương trình đã cho có nghiệm là \(\left( {2;\,\, - 1} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.