Một vật \(M\) được gắn vào đầu lò xo và dao động quanh vị trí cân bằng \(I\), biết rằng \(O\) là hình chiếu vuông góc của \(I\) trên trục \(Ox\), toạ độ điểm \(M\) trên \(Ox\) tại thời điểm \(t\) (giây) là đại lượng \(s\) (đơn vị: cm) được tính bởi công thức \(s = 8,6\cos \left( {8t + \frac{\pi }{2}} \right)\). Tại mấy thời điểm trong khoảng 2 giây đầu tiên thì \(s = 4,3\;\) cm?

Một vật \(M\) được gắn vào đầu lò xo và dao động quanh vị trí cân bằng \(I\), biết rằng \(O\) là hình chiếu vuông góc của \(I\) trên trục \(Ox\), toạ độ điểm \(M\) trên \(Ox\) tại thời điểm \(t\) (giây) là đại lượng \(s\) (đơn vị: cm) được tính bởi công thức \(s = 8,6\cos \left( {8t + \frac{\pi }{2}} \right)\). Tại mấy thời điểm trong khoảng 2 giây đầu tiên thì \(s = 4,3\;\) cm?

Quảng cáo
Trả lời:
Khi \(s = 4,3\) thì \(8,6\cos \left( {8t + \frac{\pi }{2}} \right) = 4,3 \Rightarrow \cos \left( {8t + \frac{\pi }{2}} \right) = \frac{1}{2}\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{8t + \frac{\pi }{2} = \frac{\pi }{3} + k2\pi }\\{8t + \frac{\pi }{2} = - \frac{\pi }{3} + k2\pi }\end{array}(k \in \mathbb{Z}) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t = - \frac{\pi }{{48}} + k\frac{\pi }{4}}\\{t = - \frac{{5\pi }}{{48}} + k\frac{\pi }{4}}\end{array}(k \in \mathbb{Z}).} \right.} \right.\)
Vì \(t \in \left( {0\,;2} \right)\) nên có \(4\) giá trị \(t\) thoả mãn là: \({t_1} \approx 0,72\;s;{t_2} \approx 1,51\;s;{t_3} \approx 0,46\;s;\,{t_4} \approx 0,1,24\;s\).
Vậy tại 4 thời điểm trong khoảng 2 giây đầu tiên thì \(s = 4,3\;\) cm.
Đáp án: 4.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\sqrt 2 \cos \left( {2x + \frac{\pi }{4}} \right) - 1 = 0 \Leftrightarrow \cos \left( {2x + \frac{\pi }{4}} \right) = \frac{1}{{\sqrt 2 }} \Leftrightarrow \cos \left( {2x + \frac{\pi }{4}} \right) = \cos \left( {\frac{\pi }{4}} \right)\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi }\\{2x + \frac{\pi }{4} = - \frac{\pi }{4} + k2\pi }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = k\pi }\\{x = - \frac{\pi }{4} + k\pi }\end{array}} \right.\left( {k \in \mathbb{Z}} \right)\).
+ Xét nghiệm \(x = k\pi \): Do \(x \in \left( {0;\pi } \right)\) nên \(0 < k\pi < \pi \Leftrightarrow 0 < k < 1\) loại do \(\left( {k \in \mathbb{Z}} \right)\).
+ Xét nghiệm \(x = - \frac{\pi }{4} + k\pi \): Do \(x \in \left( {0;\pi } \right)\) nên \(0 < - \frac{\pi }{4} + k\pi < \pi \Leftrightarrow \frac{1}{4} < k < \frac{5}{4}\), do đó \(k = 1 \Rightarrow x = \frac{{3\pi }}{4}.\)
Vậy trên khoảng \(\left( {0;\pi } \right)\) phương trình \(\left( 1 \right)\) có tập nghiệm là \(S = \left\{ {\frac{{3\pi }}{4}} \right\}.\)
+ Xét nghiệm \(x = k\pi \):
Do \(x \in \left( { - 3\pi ;3\pi } \right)\) nên \( - 3\pi < k\pi < 3\pi \Leftrightarrow - 3 < k < 3\) do \(k \in \mathbb{Z}\) nên \(k \in \left\{ { \pm 1; \pm 2;0} \right\}\).
Vây trên khoảng \(\left( { - 3\pi ;3\pi } \right)\) phương trình có các nghiệm là \( \pm 2\pi ; \pm \pi ;0\). Tổng các nghiệm này là \({S_1} = 0\).
+ Xét nghiệm \(x = - \frac{\pi }{4} + k\pi \):
Do \(x \in \left( { - 3\pi ;3\pi } \right)\) nên \( - 3\pi < - \frac{\pi }{4} + k\pi < 3\pi \Leftrightarrow - \frac{{11}}{4} < k < \frac{{13}}{4}\) do \(k \in \mathbb{Z}\) nên\(k \in \left\{ { - 2; - 1;0;1;2;3} \right\}\).
Vây trên khoảng \(\left( { - 3\pi ;3\pi } \right)\) phương trình có các nghiệm là
\(x = - \frac{{9\pi }}{4};x = - \frac{{5\pi }}{4};x = - \frac{\pi }{4};x = \frac{{3\pi }}{4};x = \frac{{7\pi }}{4};x = \frac{{11\pi }}{4}\).
Tổng các nghiệm này là \({S_2} = \frac{{3\pi }}{2}\).
Vậy tổng các nghiệm của phương trình \(\left( 1 \right)\) trong khoảng \(\left( { - 3\pi ;3\pi } \right)\) là \(S = {S_1} + {S_2} = \frac{{3\pi }}{2}.\)
Đáp án: a) Đúng, b) Sai, c) Đúng, d) Sai.
Lời giải
Ta có \(\tan \left( {2x - 15^\circ } \right) = 1 \Leftrightarrow 2x - 15^\circ = 45^\circ + k90^\circ \Leftrightarrow x = 30^\circ + k90^\circ \,\,\left( {k \in \mathbb{Z}} \right)\).
Với \(k = - 1\), ta có \(x = - 60^\circ \) là nghiệm âm lớn nhất của phương trình (*).
\( - 180^\circ < x < 90^\circ \Rightarrow - 180^\circ < 30^\circ + k90^\circ < 90^\circ \,\,\left( {k \in \mathbb{Z}} \right) \Rightarrow k \in \left\{ { - 2; - 1;0} \right\}\)\( \Rightarrow \left[ {\begin{array}{*{20}{l}}{x = - 150^\circ }\\{x = - 60^\circ }\\{x = 30^\circ }\end{array}} \right.\).
Đáp án: a) Đúng, b) Sai, c) Sai, d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.