Câu hỏi:

05/06/2025 20

Cho phương trình \(\cos 5x = \cos \left( {x + \frac{\pi }{4}} \right)\). Tìm số nghiệm thuộc đoạn \(\left[ { - 2024;2024} \right]\) của phương trình đã cho.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có cos5x=cosx+π45x=x+π4+k2π5x=xπ4+k2π4x=π4+k2π6x=π4+k2πx=π16+kπ2x=π24+kπ3k

+ Với nghiệm \(x = \frac{\pi }{{16}} + k\frac{\pi }{2}\) ta có: \( - 2024 \le \frac{\pi }{{16}} + k\frac{\pi }{2} \le 2024 \Leftrightarrow \left\{ \begin{array}{l} - 1288,6 \le k \le 1288,4\\k \in \mathbb{Z}\end{array} \right.\).

Suy ra có 2577 nghiệm thoả mãn.

+ Với nghiệm \(x = - \frac{\pi }{{24}} + k\frac{\pi }{3}\) ta có: \( - 2024 \le - \frac{\pi }{{24}} + k\frac{\pi }{3} \le 2024 \Leftrightarrow \left\{ \begin{array}{l} - 1932,7 \le k \le 1932,9\\k \in \mathbb{Z}\end{array} \right.\).

Suy ra có 3865 nghiệm thoả mãn.

Vậy có 6442 nghiệm thoả mãn.

Đáp án: 6442.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\cot 3x = - \frac{1}{{\sqrt 3 }} \Leftrightarrow \cot 3x = \cot \left( {\frac{{ - \pi }}{3}} \right) \Leftrightarrow 3x = \frac{{ - \pi }}{3} + k\pi  \Leftrightarrow x = \frac{{ - \pi }}{9} + k\frac{\pi }{3}\,\,\left( {k \in \mathbb{Z}} \right)\).

\( - \frac{\pi }{2} < \frac{{ - \pi }}{9} + k\frac{\pi }{3} < 0\,\,\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \frac{{ - 7}}{6} < k < \frac{1}{3} \Rightarrow k = \left\{ { - 1;0} \right\} \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{ - \pi }}{9}}\\{x = \frac{{ - 4\pi }}{9}}\end{array}.} \right.\)

Đáp án:           a) Sai,             b) Sai,             c) Đúng,          d) Đúng.

Lời giải

\(\sin \left( {2x - \frac{\pi }{4}} \right) = \sin \left( {x + \frac{{3\pi }}{4}} \right) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x - \frac{\pi }{4} = x + \frac{{3\pi }}{4} + k2\pi }\\{2x - \frac{\pi }{4} = \frac{\pi }{4} - x + k2\pi }\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \pi + k2\pi }\\{x = \frac{\pi }{6} + k\frac{{2\pi }}{3}}\end{array}\left( {k \in \mathbb{Z}} \right)} \right.\).

\({\rm{V\`i }}x \in \left( {0;\pi } \right){\rm{ n\^e n }}\,x \in \left\{ {\frac{\pi }{6};\frac{{5\pi }}{6}} \right\}\). Ta có \(\frac{\pi }{6} + \frac{{5\pi }}{6} = \pi \).

Đáp án:           a) Đúng,          b) Đúng,         c) Sai,              d) Đúng.

Câu 4

Trên đường tròn lượng giác có điểm gốc là \(A\). Điểm \(M\)thuộc đường tròn sao cho cung lượng giác \(AM\) có số đo \(45^\circ \). Gọi \(N\) là điểm đối xứng với \(M\) qua trục \(Ox\), số đo cung lượng giác \(AN\) bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Tính giá trị của biểu thức \(M = \cos \frac{{2\pi }}{7} + \cos \frac{{4\pi }}{7} + \cos \frac{{6\pi }}{7}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Tìm tập xác định \(D\) của hàm số \(y = \sqrt {\sin x - 2} .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay