Câu hỏi:

14/06/2025 59

Cho phương trình \(\cos \left( {4x - \frac{{3\pi }}{8}} \right) = - 1\).

a) \(x = \frac{{11\pi }}{{32}}\) là một nghiệm của phương trình đã cho.

b) Tất cả nghiệm của phương trình đã cho được biểu diễn bởi 4 điểm trên đường tròn lượng giác.

c) Tổng nghiệm dương nhỏ nhất và nghiệm âm lớn nhất của phương trình bằng \(\frac{\pi }{4}\).

d) Phương trình đã cho có đúng 33 nghiệm trên khoảng \(\left( {\frac{\pi }{4};\frac{{19\pi }}{2}} \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(\cos \left( {4x - \frac{{3\pi }}{8}} \right) =  - 1\)\( \Leftrightarrow 4x - \frac{{3\pi }}{8} = \pi  + k2\pi \)\( \Leftrightarrow x = \frac{{11\pi }}{{32}} + k\frac{\pi }{2},k \in \mathbb{Z}\).

a) Do đó \(x = \frac{{11\pi }}{{32}}\) là một nghiệm của phương trình đã cho.

b) Tất cả nghiệm của phương trình đã cho được biểu diễn bởi 4 điểm M, N, P, Q trên đường tròn lượng giác.

c) Nghiệm dương nhỏ nhất ứng với k = 0 Þ \(x = \frac{{11\pi }}{{32}}\).

Nghiệm âm lớn nhất ứng với k = −1 \( \Rightarrow x = \frac{{11\pi }}{{32}} - \frac{\pi }{2} =  - \frac{{5\pi }}{{32}}\).

Suy ra tổng là \(\frac{{11\pi }}{{32}} + \left( {\frac{{ - 5\pi }}{{32}}} \right) = \frac{{3\pi }}{{16}}\).

d) Có \(x \in \left( {\frac{\pi }{4};\frac{{19\pi }}{2}} \right)\) nên \(\frac{\pi }{4} < \frac{{11\pi }}{{32}} + k\frac{\pi }{2} < \frac{{19\pi }}{2}\)\( \Leftrightarrow  - \frac{3}{{16}} < k < \frac{{293}}{{16}}\) mà k Î ℤ nên k Î {0; 1; …; 18}.

Vậy có tất cả 19 nghiệm.

Đáp án: a) Đúng;   b) Đúng;   c) Sai;  d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(2\sin x = \sqrt 2 \)\( \Leftrightarrow \sin x = \frac{{\sqrt 2 }}{2}\)\( \Leftrightarrow \sin x = \sin \frac{\pi }{4}\).

b) \(\sin x = \sin \frac{\pi }{4}\)\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = \frac{{3\pi }}{4} + k2\pi \end{array} \right.,k \in \mathbb{Z}\).

c) Với k = 0 thì \(x = \frac{\pi }{4};x = \frac{{3\pi }}{4}\). Suy ra nghiệm dương nhỏ nhất bằng \(\frac{\pi }{4}\).

d) Với \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

TH1: \( - \frac{\pi }{2} < \frac{\pi }{4} + k2\pi  < \frac{\pi }{2}\)\( \Leftrightarrow  - \frac{3}{8} < k < \frac{1}{8}\) mà k Î ℤ nên k = 0. Suy ra \(x = \frac{\pi }{4}\).

TH2: \( - \frac{\pi }{2} < \frac{{3\pi }}{4} + k2\pi  < \frac{\pi }{2}\)\( \Leftrightarrow  - \frac{5}{8} < k <  - \frac{1}{8}\) mà k Î ℤ nên không có giá trị nào thỏa mãn.

Vậy trong khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) số nghiệm của phương trình (*) là 1.

Đáp án: a) Đúng;   b) Sai;   c) Đúng;  d) Sai.

Câu 2

Lời giải

C

\(ta{n^2}x = 3 \Leftrightarrow tanx =  \pm \sqrt 3  \Leftrightarrow x =  \pm \frac{\pi }{3} + k\pi ,k \in \mathbb{Z}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP