Cho phương trình lượng giác \(\tan \left( {2x - 15^\circ } \right) = 1\) (*). Khi đó:
a) Phương trình (*) có nghiệm \(x = 30^\circ + k90^\circ (k \in \mathbb{Z})\).
b) Phương trình có nghiệm âm lớn nhất bằng \( - 30^\circ \).
c) Tổng các nghiệm của phương trình trong khoảng \(\left( { - 180^\circ ;90^\circ } \right)\) bằng \(180^\circ \).
d) Trong khoảng \(\left( { - 180^\circ ;90^\circ } \right)\) phương trình có nghiệm lớn nhất bằng \(60^\circ \).
Cho phương trình lượng giác \(\tan \left( {2x - 15^\circ } \right) = 1\) (*). Khi đó:
a) Phương trình (*) có nghiệm \(x = 30^\circ + k90^\circ (k \in \mathbb{Z})\).
b) Phương trình có nghiệm âm lớn nhất bằng \( - 30^\circ \).
c) Tổng các nghiệm của phương trình trong khoảng \(\left( { - 180^\circ ;90^\circ } \right)\) bằng \(180^\circ \).
d) Trong khoảng \(\left( { - 180^\circ ;90^\circ } \right)\) phương trình có nghiệm lớn nhất bằng \(60^\circ \).
Quảng cáo
Trả lời:
a) \(\tan \left( {2x - 15^\circ } \right) = 1 \Leftrightarrow x = 30^\circ + k90^\circ (k \in \mathbb{Z})\).
b) Nghiệm âm lớn nhất ứng với k = −1 Þ x = −60°.
c) \( - 180^\circ < x < 90^\circ \Rightarrow - 180^\circ < 30^\circ + k90^\circ < 90^\circ (k \in \mathbb{Z}) \Rightarrow k = \{ - 2; - 1;0\} \).
\( \Rightarrow \left[ {\begin{array}{*{20}{l}}{x = - 150^\circ }\\{x = - 60^\circ }\\{x = 30^\circ }\end{array}} \right.\).
Suy ra tổng các nghiệm là \( - 150^\circ - 60^\circ + 30^\circ = - 180^\circ \).
d) Trong khoảng \(\left( { - 180^\circ ;90^\circ } \right)\) phương trình có nghiệm lớn nhất bằng \(30^\circ \).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(2\sin x = \sqrt 2 \)\( \Leftrightarrow \sin x = \frac{{\sqrt 2 }}{2}\)\( \Leftrightarrow \sin x = \sin \frac{\pi }{4}\).
b) \(\sin x = \sin \frac{\pi }{4}\)\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = \frac{{3\pi }}{4} + k2\pi \end{array} \right.,k \in \mathbb{Z}\).
c) Với k = 0 thì \(x = \frac{\pi }{4};x = \frac{{3\pi }}{4}\). Suy ra nghiệm dương nhỏ nhất bằng \(\frac{\pi }{4}\).
d) Với \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
TH1: \( - \frac{\pi }{2} < \frac{\pi }{4} + k2\pi < \frac{\pi }{2}\)\( \Leftrightarrow - \frac{3}{8} < k < \frac{1}{8}\) mà k Î ℤ nên k = 0. Suy ra \(x = \frac{\pi }{4}\).
TH2: \( - \frac{\pi }{2} < \frac{{3\pi }}{4} + k2\pi < \frac{\pi }{2}\)\( \Leftrightarrow - \frac{5}{8} < k < - \frac{1}{8}\) mà k Î ℤ nên không có giá trị nào thỏa mãn.
Vậy trong khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) số nghiệm của phương trình (*) là 1.
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Lời giải
C
\(ta{n^2}x = 3 \Leftrightarrow tanx = \pm \sqrt 3 \Leftrightarrow x = \pm \frac{\pi }{3} + k\pi ,k \in \mathbb{Z}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Cho phương trình \(\cos \left( {4x - \frac{{3\pi }}{8}} \right) = - 1\).
a) \(x = \frac{{11\pi }}{{32}}\) là một nghiệm của phương trình đã cho.
b) Tất cả nghiệm của phương trình đã cho được biểu diễn bởi 4 điểm trên đường tròn lượng giác.
c) Tổng nghiệm dương nhỏ nhất và nghiệm âm lớn nhất của phương trình bằng \(\frac{\pi }{4}\).
d) Phương trình đã cho có đúng 33 nghiệm trên khoảng \(\left( {\frac{\pi }{4};\frac{{19\pi }}{2}} \right)\).
Cho phương trình \(\cos \left( {4x - \frac{{3\pi }}{8}} \right) = - 1\).
a) \(x = \frac{{11\pi }}{{32}}\) là một nghiệm của phương trình đã cho.
b) Tất cả nghiệm của phương trình đã cho được biểu diễn bởi 4 điểm trên đường tròn lượng giác.
c) Tổng nghiệm dương nhỏ nhất và nghiệm âm lớn nhất của phương trình bằng \(\frac{\pi }{4}\).
d) Phương trình đã cho có đúng 33 nghiệm trên khoảng \(\left( {\frac{\pi }{4};\frac{{19\pi }}{2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.