Câu hỏi:

07/07/2025 14

PHẦN II. TRẢ LỜI NGẮN

Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B có \(AC = a\sqrt 3 \), cạnh bên AA' = 3a. Góc giữa đường thẳng A'C và mặt phẳng (ABC) bằng bao nhiêu độ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Góc giữa đường thẳng A'C và mặt phẳng (ABC) bằng bao nhiêu độ? (ảnh 1)

Ta có hình chiếu của A'C lên (ABC) là AC.

Nên (A'C, (ABC)) = (A'C, AC) = \(\widehat {A'CA}\).

Ta có \(\tan \widehat {A'CA} = \frac{{A'A}}{{AC}} = \frac{{3a}}{{a\sqrt 3 }} = \sqrt 3 \Rightarrow \widehat {A'CA} = 60^\circ \).

Do vậy (A'C, (ABC)) = 60°.

Trả lời: 60.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

D

Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a.Gọi M là trung điểm của SD. Tan của góc giữa đường thẳng BM và mặt phẳng (ABCD) bằng (ảnh 2)

Gọi O là tâm của hình vuông, hạ MH ^ BD.

Ta có SO ^ (ABCD) và \(SO = \sqrt {{a^2} - \frac{{{a^2}}}{2}} = \frac{{a\sqrt 2 }}{2}\).

Gọi M là trung điểm của OD ta có MH // SO nên H là hình chiếu của M lên mặt phẳng (ABCD) và \(MH = \frac{1}{2}SO = \frac{{a\sqrt 2 }}{4}\).

Do đó góc giữa đường thẳng BM và mặt phẳng (ABCD) là \(\widehat {MBH}\).

Khi đó ta có \(\tan \widehat {MBH} = \frac{{MH}}{{BH}} = \frac{{a\sqrt 2 }}{4}:\frac{{3a\sqrt 2 }}{4} = \frac{1}{3}\).

Lời giải

D (ảnh 1)

a) DSAB đều, H là trung điểm cạnh AB Þ SH ^ AB.

\(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABC} \right)\\\left( {SAB} \right) \cap \left( {ABC} \right) = AB\\SH \bot AB\end{array} \right.\) Þ SH ^ (ABC) Þ SH ^ HB.

Mà SH ^ CH (do SH ^ (ABC)) nên [B, SH, C] = \(\widehat {BHC}\).

b) Tương tự AH ^ SH, CH ^ SH nên [A, H, C] = \(\widehat {AHC}\).

c) Có SH ^ AB, CH ^ AB Þ [S, AB, C] là \(\widehat {SHC}\).

d) Mà SH ^ CH nên \(\widehat {SHC} = 90^\circ \).

Đáp án: a) Đúng;    b) Đúng;   c) Đúng;   d) Sai.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP