Câu hỏi:
14/07/2025 8
Cho hàm số y = f(x) có đồ thị như hình vẽ. Chọn khẳng định đúng trong các khẳng định sau:

Quảng cáo
Trả lời:
B
Dựa vào đồ thị hàm số y = f(x), ta thấy hàm số f(x) liên tục tại x = 1.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Cho hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}} & {\rm{khi}}\,x \ne 1\\x + 1 & {\rm{khi}}\,x = 1\end{array} \right.\) và \(g(x) = 4{x^2} - x + 1\). Khi đó:
a) Ta có \(f(1) = 2\).
b) Hàm số \(f\left( x \right)\) liên tục tại điểm \({x_0} = 1\).
c) Hàm số \(g\left( x \right)\)liên tục tại điểm \({x_0} = 1\).
d) Hàm số \(y = f\left( x \right) - g\left( x \right)\) không liên tục tại điểm \({x_0} = 1\).
Cho hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}} & {\rm{khi}}\,x \ne 1\\x + 1 & {\rm{khi}}\,x = 1\end{array} \right.\) và \(g(x) = 4{x^2} - x + 1\). Khi đó:
a) Ta có \(f(1) = 2\).
b) Hàm số \(f\left( x \right)\) liên tục tại điểm \({x_0} = 1\).
c) Hàm số \(g\left( x \right)\)liên tục tại điểm \({x_0} = 1\).
d) Hàm số \(y = f\left( x \right) - g\left( x \right)\) không liên tục tại điểm \({x_0} = 1\).
Lời giải
a) Ta có: \(f\left( {{x_0}} \right) = f(1) = 1 + 1 = 2\).
b) \(\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (x + 1) = 2 = f\left( 1 \right){\rm{. }}\)
Vậy hàm số liên tục tại điểm \({x_0} = 1\).
c) Ta có: \(g\left( {{x_0}} \right) = g(1) = 4\).
\(\mathop {\lim }\limits_{x \to {x_0}} g(x) = \mathop {\lim }\limits_{x \to 1} \left( {4{x^2} - x + 1} \right) = 4 = g(1)\)
Vậy hàm số liên tục tại điểm \({x_0} = 1\).
d) Hàm số số \(y = f\left( x \right) - g\left( x \right)\) liên tục tại điểm \({x_0} = 1\).
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Lời giải
Hàm số f(x) liên tục với ∀x ≠ 2.
Do đó f(x) liên tục trên ℝ Û f(x) liên tục tại x = 2 Û \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\) (1).
Ta có \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - x - 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x + 1} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x + 1} \right) = 2 + 1 = 3\); f(2) = m.
Khi đó (1) Û 3 = m Û m = 3.
Trả lời: 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.