Câu hỏi:

14/07/2025 4

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt {x + 2} - 2}}{{2 - x}}\;\;khi\;x > 2\\\frac{{1 - x}}{4}\;\;\;\;\;\;\;\;\;\;\;khi\;x \le 2\end{array} \right.\). Khi đó

a) \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = - \frac{1}{4}\).

b) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \frac{1}{4}\).

c) Hàm số f(x) gián đoạn tại điểm x0 = 2.

d) Hàm số f(x) liên tục trên khoảng (−∞; 2).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{1 - x}}{4} =  - \frac{1}{4}\).

b) \[\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{\sqrt {x + 2}  - 2}}{{2 - x}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{\left( {x - 2} \right)}}{{\left( {2 - x} \right)\left( {\sqrt {x + 2}  + 2} \right)}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{ - 1}}{{\sqrt {x + 2}  + 2}} =  - \frac{1}{4}\].

c) Vì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = f\left( 2 \right)\) nên hàm số f(x) liên tục tại x = 2.

d) Với x < 2 thì \(f\left( x \right) = \frac{{1 - x}}{4}\) nên hàm số liên tục trên khoảng (−∞; 2).

Đáp án: a) Đúng;    b) Sai; c) Sai; d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: \(f\left( {{x_0}} \right) = f(1) = 1 + 1 = 2\).

b) \(\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (x + 1) = 2 = f\left( 1 \right){\rm{. }}\)

Vậy hàm số liên tục tại điểm \({x_0} = 1\).

c) Ta có: \(g\left( {{x_0}} \right) = g(1) = 4\).

\(\mathop {\lim }\limits_{x \to {x_0}} g(x) = \mathop {\lim }\limits_{x \to 1} \left( {4{x^2} - x + 1} \right) = 4 = g(1)\)

Vậy hàm số liên tục tại điểm \({x_0} = 1\).

d) Hàm số số \(y = f\left( x \right) - g\left( x \right)\) liên tục tại điểm \({x_0} = 1\).

Đáp án: a) Đúng;    b) Đúng; c) Đúng; d) Sai.

Câu 2

Lời giải

A

Hàm phân thức \(y = \frac{1}{{{x^2} - 3x + 2}}\) liên tục trên mỗi khoảng xác định (−∞; 1); (1; 2) và (2; +∞).

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP