Câu hỏi:

14/07/2025 87 Lưu

Tìm giá trị của tham số m để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt {2x - 1} - 1}}{{x - 1}}\;\;khi\;x \ne 1\\m - 2024\;\;\;\;\;khi\;x = 1\end{array} \right.\) liên tục tại x = 1.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \[\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {2x - 1}  - 1}}{{x - 1}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{{2\left( {x - 1} \right)}}{{\left( {\sqrt {2x - 1}  + 1} \right)\left( {x - 1} \right)}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{2}{{\sqrt {2x - 1}  + 1}} = 1\].

Để hàm số liên tục tại x = 1 thì \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\) Û m – 2024 = 1 Û m = 2025.

Trả lời: 2025.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

B

Dựa vào đồ thị hàm số y = f(x), ta thấy hàm số f(x) liên tục tại x = 1.

Câu 2

Lời giải

A

\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP